Qwen2.5-Coder-7B-Instruct模型本地部署,并实现简单的web对话
在自己电脑上部署一个聊天机器人,实现简单的chat界面,适用于千问2大概千问2.5的模型。windows环境也通用,修改好对应的路径就可以。该Qwen-Coder-7B模型加载进显存后约莫占用14G,支持流式传输,界面示例如图:
https://i-blog.csdnimg.cn/direct/a524a3aadae24807bc66e7c58d69b746.png
部署流程:
1、配置环境
在已经有torch+cuda的条件下,还必要以下几个库:
pip installtransformers
pip installaccelerate
pip installgradio 其中transformers库需满足版本大于即是4.37.0,用来加载模型,accelerate用于加快模型,gradio用于生成前端界面。
2、下载模型文件
下载模型的地方:(魔搭社区)
点击此处下载模型:
https://i-blog.csdnimg.cn/direct/292cc633c746417f9d801059e49e3c5c.png
提供了很多种下载方式,选择一种方式下载即可:
https://i-blog.csdnimg.cn/direct/982988656d994df098d468794d4ca647.png
3、加载模型
下面代码是官方的示例
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "path/to/your/model"
# 把这里修改成你下载的模型位置,比如我是/home/LLM/Qwen/Qwen2_5-Coder-7B-Instruct
model = AutoModelForCausalLM.from_pretrained( # 加载模型
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name) # 加载分词器
prompt = "Give me a short introduction to large language model.Answer it in Chinese"
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer(, return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
print(response) 4、实现简单的chat功能,举行web访问
起首导入必要用到的库和几个全局变量
from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# 分别是用户头像和聊天机器人的头像(需要在gradio工作的项目下,这里我的项目名为LLM)
user_icon = '/home/LLM/Qwen-main/gradio_avatar_images/user_icon.jpeg'
bot_icon = '/home/LLM/Qwen-main/gradio_avatar_images/bot_icon.jpg'
model_name = '/home/LLM/Qwen/Qwen2_5-Coder-7B-Instruct' # 模型存放位置
qwen_chat_history = [
{"role": "system", "content": "You are a helpful assistant."}
]# 储存历史对话
定义一个加载模型的函数:
def _load_model():
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
)
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)
return model, tokenizer, streamer
TextIteratorStreamer用于生成流式输出。 然后是整个聊天界面的一个实现,使用gradio库实现
with gr.Blocks() as demo:
model, tokenizer, streamer = _load_model() # 载入模型
chatbot = gr.Chatbot(
height=600, # 界面高度,可以自己调
avatar_images=(user_icon, bot_icon)
)# Chatbot还涉及很多参数,如需了解清查阅官方技术文档
msg = gr.Textbox()
clear = gr.ClearButton()
# 清除历史记录
def _clean_history():
global qwen_chat_history
qwen_chat_history = []
#生成回复
def _response(message, chat_history):
qwen_chat_history.append({"role": "user", "content": message}) # 拼接历史对话
history_str = tokenizer.apply_chat_template(
qwen_chat_history,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(history_str, return_tensors='pt').to(model.device)
chat_history.append()
# 推理参数
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=2048,
num_beams=1,
do_sample=True,
top_p=0.8,
temperature=0.3,
)
# 监控流失输出结果
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
for new_text in streamer:
chat_history[-1] += new_text
yield "", chat_history
qwen_chat_history.append(
{"role": "assistant", "content": chat_history[-1]}
)
clear.click(_clean_history())
msg.submit(_response, , )
demo.queue().launch(
share=False,
server_port=8000,
server_name="127.0.0.1",
) # 绑定8000端口,进行web访问 运行代码,会生成一个链接:
https://i-blog.csdnimg.cn/direct/e1c71a0a14af413888b0c2438892c3c5.png
直接点开大概复制到浏览器打开就可以进入聊天界面:
https://i-blog.csdnimg.cn/direct/418f0a9f1672416fb161a3986bee25cf.png
完备代码:
from threading import Threadimport gradio as grfrom transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreameruser_icon = '/home/lhp/Desktop/LLM/Qwen-main/gradio_avatar_images/user_icon.jpeg'bot_icon = '/home/lhp/Desktop/LLM/Qwen-main/gradio_avatar_images/bot_icon.jpg'model_name = '/home/lhp/Desktop/LLM/Qwen/Qwen2_5-Coder-7B-Instruct'qwen_chat_history = [ {"role": "system", "content": "You are a helpful assistant."}]def _load_model():
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
)
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)
return model, tokenizer, streamer
with gr.Blocks() as demo: model, tokenizer, streamer = _load_model() chatbot = gr.Chatbot( height=600, avatar_images=(user_icon, bot_icon) ) msg = gr.Textbox() clear = gr.ClearButton() def _clean_history(): global qwen_chat_history qwen_chat_history = [] def _response(message, chat_history): qwen_chat_history.append({"role": "user", "content": message}) # 拼接历史对话 history_str = tokenizer.apply_chat_template( qwen_chat_history, tokenize=False, add_generation_prompt=True ) inputs = tokenizer(history_str, return_tensors='pt').to(model.device) chat_history.append() # 拼接推理参数 generation_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=2048, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, ) # 启动线程,用以监控流失输出结果 thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() for new_text in streamer: chat_history[-1] += new_text yield "", chat_history qwen_chat_history.append( {"role": "assistant", "content": chat_history[-1]} ) clear.click(_clean_history()) msg.submit(_response, , )demo.queue().launch( share=False, server_port=8000, server_name="127.0.0.1",)
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页:
[1]