JUC并发—7.AQS源码分析三
大纲1.等待多线程完成的CountDownLatch先容
2.CountDownLatch.await()方法源码
3.CountDownLatch.coutDown()方法源码
4.CountDownLatch总结
5.控制并发线程数的Semaphore先容
6.Semaphore的令牌获取过程
7.Semaphore的令牌释放过程
8.同步屏障CyclicBarrier先容
9.CyclicBarrier的await()方法源码
10.使用CountDownLatch等待注册的完成
11.使用CyclicBarrier将工作任务多线程分而治之
12.使用CyclicBarrier聚合服务接口的返回效果
13.使用Semaphore等待指定数量线程完成任务
volatile、synchronized、CAS、AQS、读写锁、锁优化和锁故障、并发集合、线程池、同步组件
1.等待多线程完成的CountDownLatch
(1)CountDownLatch的简介
(2)CountDownLatch的应用
(3)CountDownLatch的例子
(1)CountDownLatch的简介
CountDownLatch答应一个或多个线程等待其他线程完成操纵。CountDownLatch提供了两个焦点方法,分别是await()方法和countDown()方法。CountDownLatch.await()方法让调用线程举行阻塞进入等待状态,CountDownLatch.countDown()方法用于对计数器举行递减。
CountDownLatch在构造时需要传入一个正整数作为计数器初始值。线程每调用一次countDown()方法,都会对该计数器减一。当计数器为0时,会唤醒所有执行await()方法时被阻塞的线程。
(2)CountDownLatch的应用
应用一:
使用多线程去解析一个Excel里多个sheet的数据,每个线程解析一个sheet里的数据,等所有sheet解析完再提示处理完成。此时便可以使用CountDownLatch来实现,当然可以使用Thread.join()方法。
留意:Thread.join()方法是基于wait()和notify()来实现的。在main线程里开启一个线程A,main线程假如执行了线程A的join()方法,那么就会导致main线程被阻塞,main线程会等待线程A执行完毕才会继续往下执行。
应用二:
微服务注册中心的register-client,为了在注册线程执行成功后,才发送心跳。可以使用CountDownLatch,当然也可以使用Thread.join()方法。
应用三:
可以通过CountDownLatch实现类似并发的效果。把CountDownLatch的计数器设置为1,然后让1000个线程调用await()方法。当1000个线程初始化完成后,在main线程调用countDown()让计数器归零。这样这1000个线程就会在一个for()循环中,依次被唤醒。
(3)CountDownLatch的例子
public class CountDownLatchDemo {
public static void main(String[] args) throws Exception {
final CountDownLatch latch = new CountDownLatch(2);
new Thread() {
public void run() {
try {
Thread.sleep(1000);
System.out.println("线程1开始执行,休眠2秒...");
Thread.sleep(1000);
System.out.println("线程1准备执行countDown操作...");
latch.countDown();
System.out.println("线程1完成执行countDown操作...");
} catch (Exception e) {
e.printStackTrace();
}
}
}.start();
new Thread() {
public void run() {
try {
Thread.sleep(1000);
System.out.println("线程2开始执行,休眠2秒...");
Thread.sleep(1000);
System.out.println("线程2准备执行countDown操作...");
latch.countDown();
System.out.println("线程2完成执行countDown操作...");
} catch (Exception e) {
e.printStackTrace();
}
}
}.start();
System.out.println("main线程准备执行countDownLatch的await操作,将会同步阻塞等待...");
latch.await();
System.out.println("所有线程都完成countDown操作,结束同步阻塞等待...");
}
}
2.CountDownLatch.await()方法源码
(1)CountDownLatch.await()方法的阻塞流程
(2)CountDownLatch.await()方法的唤醒流程
(3)CountDownLatch.await()方法的阻塞总结
(1)CountDownLatch.await()方法的阻塞流程
CountDownLatch是基于AQS中的共享锁来实现的。从CountDownLatch的构造方法可知,CountDownLatch的count就是AQS的state。
调用CountDownLatch的await()方法时,会先调用AQS的acquireSharedInterruptibly()模版方法,然后会调用CountDownLatch的内部类Sync实现的tryAcquireShared()方法。tryAcquireShared()方法会判断state的值是否为0,假如为0,才返回1,否则返回-1。
当调用CountDownLatch内部类Sync的tryAcquireShared()方法得到的返回值是-1时,才会调用AQS的doAcquireSharedInterruptibly()方法,将当火线程封装成Node结点加入等待队列,然后挂起当火线程举行阻塞。
//A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.
public class CountDownLatch {
private final Sync sync;
public CountDownLatch(int count) {
if (count < 0) {
throw new IllegalArgumentException("count < 0");
}
this.sync = new Sync(count);
}
//Synchronization control For CountDownLatch.
//Uses AQS state to represent count.
private static final class Sync extends AbstractQueuedSynchronizer {
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
//Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0) {
return false;
}
int nextc = c-1;
if (compareAndSetState(c, nextc)) {
return nextc == 0;
}
}
}
}
//Causes the current thread to wait until the latch has counted down to zero,
//unless the thread is Thread#interrupt interrupted.
public void await() throws InterruptedException {
//执行AQS的acquireSharedInterruptibly()方法
sync.acquireSharedInterruptibly(1);
}
...
}
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
...
//Acquires in shared mode, aborting if interrupted.
//Implemented by first checking interrupt status, then invoking at least once #tryAcquireShared, returning on success.
//Otherwise the thread is queued, possibly repeatedly blocking and unblocking,
//invoking #tryAcquireShared until success or the thread is interrupted.
public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
if (Thread.interrupted()) {
throw new InterruptedException();
}
//执行CountDownLatch的内部类Sync实现的tryAcquireShared()方法,抢占共享锁
if (tryAcquireShared(arg) < 0) {
//执行AQS的doAcquireSharedInterruptibly()方法
doAcquireSharedInterruptibly(arg);
}
}
//Acquires in shared interruptible mode.
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
final Node node = addWaiter(Node.SHARED);//封装当前线程为Shared类型的Node结点
boolean failed = true;
try {
//第一次循环r = -1,所以会执行AQS的shouldParkAfterFailedAcquire()方法
//将node结点的有效前驱结点的状态设置为SIGNAL
for (;;) {
final Node p = node.predecessor();//node结点的前驱结点
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
//执行shouldParkAfterFailedAcquire()方法设置node结点的前驱结点的状态为SIGNAL
//执行parkAndCheckInterrupt()方法挂起当前线程
if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) {
throw new InterruptedException();
}
}
} finally {
if (failed) {
cancelAcquire(node);
}
}
}
//Checks and updates status for a node that failed to acquire.
//Returns true if thread should block. This is the main signal control in all acquire loops.
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL) {
//This node has already set status asking a release to signal it, so it can safely park.
return true;
}
if (ws > 0) {
//Predecessor was cancelled. Skip over predecessors and indicate retry.
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
//waitStatus must be 0 or PROPAGATE.
//Indicate that we need a signal, but don't park yet.
//Caller will need to retry to make sure it cannot acquire before parking.
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
//设置头结点和唤醒后续线程
//Sets head of queue, and checks if successor may be waiting in shared mode,
//if so propagating if either propagate > 0 or PROPAGATE status was set.
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head;
setHead(node);//将node结点设置为头结点
if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared()) {
doReleaseShared();
}
}
}
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}
...
}(2)CountDownLatch.await()方法的唤醒流程
调用await()方法时,起首会将当火线程封装成Node结点并添加到等待队列中,然后在执行第一次for循环时会设置该Node结点的前驱结点状态为SIGNAL,接着在执行第二次for循环时才会将当火线程举行挂起阻塞。
当该线程后续被唤醒时,该线程又会进入下一次for循环。假如该线程对应的node结点的前驱结点是等待队列的头结点且state值已为0,那么就执行AQS的setHeadAndPropagate()方法设置头结点 + 唤醒后续线程。
其中setHeadAndPropagate()方法有两个工作(设置头结点 + 唤醒通报):
工作一:设置当前被唤醒线程对应的结点为头结点
工作二:当满意如下这两个条件的时候需要调用doReleaseShared()方法唤醒后续的线程
条件一:propagate > 0,表现当前是共享锁,需要举行唤醒通报
条件二:s.isShared()判断当前结点为共享模式
CountDownLatch的实现中会在以下两个场景调用doReleaseShared()方法:
场景一:state为1时调用的countDown()方法会调用doReleaseShared()方法
场景二:当阻塞的线程被唤醒时,会调用setHeadAndPropagate()方法,进而调用doReleaseShared()方法,这样可以提升唤醒共享结点的速率
(3)CountDownLatch.await()方法的阻塞总结
只要state != 0,就会举行如下处理:
一.将当火线程封装成一个Node结点,然后添加到AQS的等待队列中
二.调用LockSupport.park()方法,挂起当火线程
3.CountDownLatch.coutDown()方法源码
(1)CountDownLatch.coutDown()的唤醒流程
(2)CountDownLatch.tryReleaseShared()
(3)AQS的doReleaseShared()方法
(1)CountDownLatch.coutDown()的唤醒流程
调用CountDownLatch的countDown()方法时,会先调用AQS的releaseShared()模版方法,然后会执行CountDownLatch的内部类Sync实现的tryReleaseShared()方法。
假如tryReleaseShared()方法返回true,则执行AQS的doReleaseShared()方法,通过AQS的doReleaseShared()方法唤醒共享锁模式下的等待队列中的线程。
//A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.
public class CountDownLatch {
private final Sync sync;
public CountDownLatch(int count) {
if (count < 0) {
throw new IllegalArgumentException("count < 0");
}
this.sync = new Sync(count);
}
//Synchronization control For CountDownLatch.
//Uses AQS state to represent count.
private static final class Sync extends AbstractQueuedSynchronizer {
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
//Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0) {
return false;
}
int nextc = c-1;
if (compareAndSetState(c, nextc)) {
return nextc == 0;
}
}
}
}
//Decrements the count of the latch, releasing all waiting threads if the count reaches zero.
public void countDown() {
//执行AQS的releaseShared()方法
sync.releaseShared(1);
}
...
}
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
...
//Releases in shared mode.
//Implemented by unblocking one or more threads if #tryReleaseShared returns true.
public final boolean releaseShared(int arg) {
//执行CountDownLatch的内部类Sync实现的tryReleaseShared()方法,释放共享锁
if (tryReleaseShared(arg)) {
//执行AQS的doReleaseShared()方法
doReleaseShared();
return true;
}
return false;
}
//Release action for shared mode -- signals successor and ensures propagation.
//Note: For exclusive mode, release just amounts to calling unparkSuccessor of head if it needs signal.
private void doReleaseShared() {
for (;;) {
//每次循环时头结点都会发生变化
//因为调用unparkSuccessor()方法会唤醒doAcquireSharedInterruptibly()方法中阻塞的线程
//然后阻塞的线程会在执行setHeadAndPropagate()方法时通过setHead()修改头结点
Node h = head;//获取最新的头结点
if (h != null && h != tail) {//等待队列中存在挂起线程的结点
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {//头结点的状态正常,表示对应的线程可以被唤醒
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) {
continue;//loop to recheck cases
}
//唤醒头结点的后继结点
//唤醒的线程会在doAcquireSharedInterruptibly()方法中执行setHeadAndPropagate()方法修改头结点
unparkSuccessor(h);
} else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) {
//如果ws = 0表示初始状态,则修改结点为PROPAGATE状态
continue;//loop on failed CAS
}
}
if (h == head) {//判断头结点是否有变化
break;//loop if head changed
}
}
}
//Wakes up node's successor, if one exists.
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0) {
compareAndSetWaitStatus(node, ws, 0);
}
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev) {
if (t.waitStatus <= 0) {
s = t;
}
}
}
if (s != null) {
LockSupport.unpark(s.thread);
}
}
...
}
7.Semaphore的令牌释放过程
(1)Semaphore的令牌释放过程
(2)Semaphore的令牌释放本质
(1)Semaphore的令牌释放过程
在调用Semaphore的release()方法去释放令牌时:起首会执行AQS的模版方法releaseShared(),然后执行Sync实现的tryReleaseShared()方法来释放锁(累加state值)。假如释放锁成功,则执行AQS的doReleaseShared()方法去唤醒线程。
(2)Semaphore的令牌释放本质
Semaphore的release()方法释放令牌的本质就是对state字段举行累加,然后唤醒等待队列头结点的后继结点 + 唤醒通报来唤醒等待的线程。
留意:并非一定要执行acquire()方法的线程才能调用release()方法,任意一个线程都可以调用release()方法,也可以通过reducePermits()方法来减少令牌数。
public class Semaphore implements java.io.Serializable { private final Sync sync; //Creates a Semaphore with the given number of permits and nonfair fairness setting. public Semaphore(int permits) { sync = new NonfairSync(permits); } //Releases a permit, returning it to the semaphore. public void release() { //执行AQS的模版方法releaseShared() sync.releaseShared(1); } //Synchronization implementation for semaphore. //Uses AQS state to represent permits. Subclassed into fair and nonfair versions. abstract static class Sync extends AbstractQueuedSynchronizer { Sync(int permits) { //设置state的值为传入的令牌数 setState(permits); } //实验释放锁,也就是对state值举行累加 protected final boolean tryReleaseShared(int releases) { for (;;) { int current = getState(); int next = current + releases; if (next < current) { throw new Error("Maximum permit count exceeded"); } if (compareAndSetState(current, next)) { return true; } } } ... } ...}public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { ... //Releases in shared mode. //Implemented by unblocking one or more threads if #tryReleaseShared returns true. public final boolean releaseShared(int arg) { //执行Semaphore的内部类Sync实现的tryReleaseShared()方法,释放共享锁 if (tryReleaseShared(arg)) { //执行AQS的doReleaseShared()方法,唤醒等待队列中的线程 doReleaseShared(); return true; } return false; } //Release action for shared mode -- signals successor and ensures propagation. //Note: For exclusive mode, release just amounts to calling unparkSuccessor of head if it needs signal. private void doReleaseShared() { for (;;) { //每次循环时头结点都会发生变化 //因为调用unparkSuccessor()方法会唤醒doAcquireSharedInterruptibly()方法中阻塞的线程 //然后阻塞的线程会在执行setHeadAndPropagate()方法时通过setHead()修改头结点 Node h = head;//获取最新的头结点 if (h != null && h != tail) {//等待队列中存在挂起线程的结点 int ws = h.waitStatus; if (ws == Node.SIGNAL) {//头结点的状态正常,表现对应的线程可以被唤醒 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) { continue;//loop to recheck cases } //唤醒头结点的后继结点 //唤醒的线程会在doAcquireSharedInterruptibly()方法中执行setHeadAndPropagate()方法修改头结点 unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) { //假如ws = 0表现初始状态,则修改结点为PROPAGATE状态 continue;//loop on failed CAS } } if (h == head) {//判断头结点是否有变化 break;//loop if head changed } } } //Wakes up node's successor, if one exists. private void unparkSuccessor(Node node) { int ws = node.waitStatus; if (ws < 0) { compareAndSetWaitStatus(node, ws, 0); } Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) { if (t.waitStatus0L) { nanos = trip.awaitNanos(nanos); } } catch (InterruptedException ie) { if (g == generation && ! g.broken) { breakBarrier(); throw ie; } else { Thread.currentThread().interrupt(); } } if (g.broken) { throw new BrokenBarrierException(); } if (g != generation) { return index; } if (timed && nanos
页:
[1]