使用Go复刻skiplist核心功能
0、引言正好做LC逐日一题要求实现一个跳表,于是学习了redis的扩展skiplist,并使用Go进行复刻学习。学习参考了文章:Redis内部数据布局详解(6)——skiplist - 铁蕾的个人博客
因为作者本领有限,本文只是对跳表的核心功能:创建节点与跳表、插入节点、删除节点、获取节点rank、根据rank获取节点、获取分数区间的ele集合进行复刻,其余的需要自己去实现。
1、跳表核心布局
源码的数据布局定义如下:
#define ZSKIPLIST_MAXLEVEL 32
#define ZSKIPLIST_P 0.25
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {
sds ele;
double score;
struct zskiplistNode *backward;
struct zskiplistLevel {
struct zskiplistNode *forward;
unsigned long span;
} level[];
} zskiplistNode;
typedef struct zskiplist {
struct zskiplistNode *header, *tail;
unsigned long length;
int level;
} zskiplist;
[*]定义了两个常量,一个是跳表的最大层数ZSKIPLIST_MAXLEVEL,一个是当前节点含有i+1层的概率ZSKIPLIST_P
[*]跳表节点zskiplistNode:
[*]ele,为string范例,存放的是节点的数据
[*]score,存放数据对应的值
[*]backward指向前一个跳表节点,只存在第一层链接中
[*]level存放多层指向下一个节点的指针forawrd,同时含有一个span用于表示当前指针超过了多少个节点,用于实现通过排名查询。注意,span是表示当前层,从header到当前节点跨过的指针数,它不包罗指针的起始节点,但是包罗终点节点。
[*]跳表本身zskiplist:
[*]header和tail,指向跳表首尾的指针
[*]length跳表总节点数
[*]level跳表当前的层数
复刻:
package goskiplist
const (
SKIPLIST_MAXLEVEL = 32
SKIPLIST_P = 0.25
)
type GskiplistLevel struct {
forward *GskiplistNode
span uint64
}
type GskiplistNode struct {
ele string
score float64
backward *GskiplistNode
level []GskiplistLevel
}
type Gskiplist struct {
header *GskiplistNode
tail *GskiplistNode
length uint64
level int
}2、创建跳表节点与跳表
创建跳表节点源码:
zskiplistNode *zslCreateNode(int level, double score, sds ele) {
zskiplistNode *zn =
zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
zn->score = score;
zn->ele = ele;
return zn;
}复刻:
func createNode(level int, score float64, ele string) *GskiplistNode{
node := &GskiplistNode{
ele: ele,
score: score,
level: make([]GskiplistLevel, level),
backward: nil,
}
return node
}创建跳表源码:
/* Create a new skiplist. */
zskiplist *zslCreate(void) {
int j;
zskiplist *zsl;
zsl = zmalloc(sizeof(*zsl));
zsl->level = 1;
zsl->length = 0;
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
zsl->header->level.forward = NULL;
zsl->header->level.span = 0;
}
zsl->header->backward = NULL;
zsl->tail = NULL;
return zsl;
}初始化设置了跳表的层数为1、节点数为0、初始化头节点指针,分配内存。注意,头节点并不计算在length中。
颠末初始化,创建的跳表如下:
https://img2024.cnblogs.com/blog/3542244/202502/3542244-20250224200558177-240089610.png
3、向跳表插入节点
源码:
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
zskiplistNode *update, *x;
unsigned long rank;
int i, level;
serverAssert(!isnan(score));
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* store rank that is crossed to reach the insert position */
rank = i == (zsl->level-1) ? 0 : rank;
while (x->level.forward &&
(x->level.forward->score < score ||
(x->level.forward->score == score &&
sdscmp(x->level.forward->ele,ele) < 0)))
{
rank += x->level.span;
x = x->level.forward;
}
update = x;
}
/* we assume the element is not already inside, since we allow duplicated
* scores, reinserting the same element should never happen since the
* caller of zslInsert() should test in the hash table if the element is
* already inside or not. */
level = zslRandomLevel();
if (level > zsl->level) {
for (i = zsl->level; i < level; i++) {
rank = 0;
update = zsl->header;
update->level.span = zsl->length;
}
zsl->level = level;
}
x = zslCreateNode(level,score,ele);
for (i = 0; i < level; i++) {
x->level.forward = update->level.forward;
update->level.forward = x;
/* update span covered by update as x is inserted here */
x->level.span = update->level.span - (rank - rank);
update->level.span = (rank - rank) + 1;
}
/* increment span for untouched levels */
for (i = level; i < zsl->level; i++) {
update->level.span++;
}
x->backward = (update == zsl->header) ? NULL : update;
if (x->level.forward)
x->level.forward->backward = x;
else
zsl->tail = x;
zsl->length++;
return x;
}zslInsert重要实现了向跳表中插入一个节点,节点的值为ele,分数为score。
解析:
(1)创建数组与断言检查
zskiplistNode *update, *x;
unsigned long rank;
int i, level;
serverAssert(!isnan(score));
x = zsl->header;
[*]*update[]用于记录每一层插入的位置,update表示节点在第i层,应该插入在update节点之后。
[*]rank[]用于记录每一层的跨度,rank表示从第i层,跳到update节点的跨度。使用了前缀和的头脑。
[*]*x用于节点的遍历
[*]serverAssert用于判断数值是否非常
(2)查找插入位置
for (i = zsl->level-1; i >= 0; i--) {
/* store rank that is crossed to reach the insert position */
rank = i == (zsl->level-1) ? 0 : rank;
while (x->level.forward &&
(x->level.forward->score < score ||
(x->level.forward->score == score &&
sdscmp(x->level.forward->ele,ele) < 0)))
{
rank += x->level.span;
x = x->level.forward;
}
update = x;
}i从当前跳表的最高层向下遍历。在每一次遍历中:
<ul>rank初始赋值上一层的结果,若为最高层则赋值0
若当<strong>前层的当前节点存在下一节点,并且分数 zsl->level) { for (i = zsl->level; i < level; i++) { rank = 0; update = zsl->header; update->level.span = zsl->length; } zsl->level = level; }使用zslRandomLevel函数设定新节点的最高层数。假如这个最高层数大于目前跳表的层数,那么就需要设定新高层的rank和update。
zslRandomLevel的实现如下:
level = zslRandomLevel();
if (level > zsl->level) {
for (i = zsl->level; i < level; i++) {
rank = 0;
update = zsl->header;
update->level.span = zsl->length;
}
zsl->level = level;
}调整每一层的要插入的位置的前一个节点的指针指向,并且更新span。
假设在第i层,我们称update为pre,未更新前pre的下一个节点未next,那么因为要在pre和next之间插入新的节点,更新pre的span为pre到next的距离-cur到next的距离。更新cur的span为cur到next的距离。
第二个循环是为了更新当前节点的更高层未更新节点的span值。
颠末这一次调整,如图:
https://img2024.cnblogs.com/blog/3542244/202502/3542244-20250224200640367-890541105.png
这里我画图用于形象的表示span的计算过程,它采用了前缀和的方式:
https://img2024.cnblogs.com/blog/3542244/202502/3542244-20250224200648727-1948773627.png
(5)更新新节点的前指针
int zslRandomLevel(void) {
static const int threshold = ZSKIPLIST_P*RAND_MAX;
int level = 1;
while (random() < threshold)
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}假如update不是头节点,那么它就是x的前一个节点。假如x的后节点存在,则更新x的后节点的前指针指向x,否则x是末端节点,让tail指向它。
复刻Go源码:
x = zslCreateNode(level,score,ele);
for (i = 0; i < level; i++) {
x->level.forward = update->level.forward;
update->level.forward = x;
/* update span covered by update as x is inserted here */
x->level.span = update->level.span - (rank - rank);
update->level.span = (rank - rank) + 1;
}
/* increment span for untouched levels */
for (i = level; i < zsl->level; i++) {
update->level.span++;
}4、删除跳表节点
x->backward = (update == zsl->header) ? NULL : update;
if (x->level.forward)
x->level.forward->backward = x;
else
zsl->tail = x;
zsl->length++;
return x;先来看zslDelete:它是删除节点的最上层,update的更新方法与插入同等。接着就是删除score和ele相同的节点,其中node参数用于提供保存删除节点的作用。在Go语言的复刻中,我们可以直接返回node和是否删除成功。
再看zslDeleteNode,它是删除节点的下游详细实现,详细细节如下:
[*]逐层删除x,假如当前层有x,则需要将前一个节点的后指针指向x的后指针,然后更新前一个节点的span;否则只用更新span
[*]假如x的后节点存在,则更新后节点的backward指针,否则修改跳表的tail。
[*]假如存在高层,在删除x后为空层,要修改跳表的层数。
[*]减去一个length
Go复刻如下:
// 向跳表插入一个节点,同时返回插入好的节点。
// ele不能为空串,否则返回nil。
func (this *Gskiplist) Insert(score float64, ele string) *GskiplistNode {
if ele == "" {
return nil
}
update := make([]*GskiplistNode, SKIPLIST_MAXLEVEL)
rank := make([]uint64, SKIPLIST_MAXLEVEL)
var x *GskiplistNode
x = this.header
//更新update以及rank
for i := this.level - 1; i >= 0; i-- {
rank = 0
if i != this.level-1 {
rank = rank
}
for x.level.forward != nil &&
(x.level.forward.score < score ||
(x.level.forward.score == score && x.level.forward.ele < ele)) {
rank += x.level.span
x = x.level.forward
}
update = x
}
level := this.randomLevel()
//更新最大层数
if level > this.level {
for i := this.level; i < level; i++ {
rank = 0
update = this.header
update.level.span = this.length
}
this.level = level
}
x = createNode(level, score, ele)
//插入操作
for i := 0; i < level; i++ {
x.level.forward = update.level.forward
update.level.forward = x
//更新x和前一个节点的span
x.level.span = update.level.span - (rank - rank)
update.level.span = (rank - rank) + 1
}
//更新更高层
for i := level; i < this.level; i++ {
update.level.span++
}
//更新前节点指针指向
x.backward = nil
if update != this.header {
x.backward = update
}
if x.level.forward != nil {
x.level.forward.backward = x
} else {
this.tail = x
}
this.length++
return x
}5、获取节点的rank
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
int i;
for (i = 0; i < zsl->level; i++) {
if (update->level.forward == x) {
update->level.span += x->level.span - 1;
update->level.forward = x->level.forward;
} else {
update->level.span -= 1;
}
}
if (x->level.forward) {
x->level.forward->backward = x->backward;
} else {
zsl->tail = x->backward;
}
while(zsl->level > 1 && zsl->header->level.forward == NULL)
zsl->level--;
zsl->length--;
}
int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) {
zskiplistNode *update, *x;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level.forward &&
(x->level.forward->score < score ||
(x->level.forward->score == score &&
sdscmp(x->level.forward->ele,ele) < 0)))
{
x = x->level.forward;
}
update = x;
}
/* We may have multiple elements with the same score, what we need
* is to find the element with both the right score and object. */
x = x->level.forward;
if (x && score == x->score && sdscmp(x->ele,ele) == 0) {
zslDeleteNode(zsl, x, update);
if (!node)
zslFreeNode(x);
else
*node = x;
return 1;
}
return 0; /* not found */
}从高层逐个寻找,找到即返回。
6、根据排名获取节点
//删除节点,返回这个节点以及是否成功
func (this *Gskiplist) Delete(score float64, ele string) (*GskiplistNode, bool) {
update := make([]*GskiplistNode, SKIPLIST_MAXLEVEL)
var x *GskiplistNode
x = this.header
for i := this.level - 1; i >= 0; i-- {
for x.level.forward != nil &&
(x.level.forward.score < score ||
(x.level.forward.score == score && x.level.forward.ele < ele)) {
x = x.level.forward
}
update = x
}
x = x.level.forward
//从底层删除
if x != nil && x.score == score && x.ele == ele {
this.deleteNode(x, update)
return x, true
}
//未找到对应节点
return nil, false
}
func (this *Gskiplist) deleteNode(x *GskiplistNode, update []*GskiplistNode) {
for i := 0; i < this.level; i++ {
if update.level.forward == x {
//在这一层,存在x
update.level.span += x.level.span - 1
update.level.forward = x.level.forward
} else {
//不存在则只更新span
update.level.span--
}
}
if x.level.forward != nil {
x.level.forward.backward = x.backward
} else {
this.tail = x.backward
}
//若x独占高层,需要逐个清除
for this.level > 1 && this.header.level.forward == nil {
this.level--
}
this.length--
}Go复刻:
// 根据排名获取节点func (this *Gskiplist) GetElementByRank(rank uint64) *GskiplistNode { return this.getElementByRankFromNode(this.header, this.level-1, rank)}func (this *Gskiplist) getElementByRankFromNode(startNode *GskiplistNode, startLevel int, rank uint64) *GskiplistNode { x := startNode var traversed uint64 for i := startLevel; i >= 0; i-- { for x.level.forward != nil && traversed+x.level.span = 0; i-- { for x.level.forward != nil && x.level.forward.score < low { x = x.level.forward } } x = x.level.forward for x != nil && x.score
页:
[1]