实现基于深度学习ECG心电信号分类,用多个数据集(MIT-BIH心率不齐数据库、
基于深度学习的ECG心信号分类https://i-blog.csdnimg.cn/direct/08c0881941ff4ea6abed2a174c52932a.png
对人体的心电信号进行分类,判断出被测试者心跳是否正常,或患有什么样的心脏疾病,终极实现心电数据的分类。此中包罗CNN,LSTM,GRU等模子对比。https://i-blog.csdnimg.cn/direct/899fa72ba9054fa19723fccf7ee5b37c.png
数据集利用的是以下四个数据集的合并:
[*]MIT-BIH心率不齐数据库
[*]MIT-BIH ST变革数据库
[*]欧盟ST-T心电数据库
[*]心脏性猝死动态心电数据库https://i-blog.csdnimg.cn/direct/832bfd79a93e48fa9fb7ff99d4db436c.png
实现基于深度学习的ECG心电信号分类,我们可以利用多个数据集(MIT-BIH心率不齐数据库、MIT-BIH ST变革数据库、欧盟ST-T心电数据库和心脏性猝死动态心电数据库)来练习和评估模子。我们将对比不同的模子,如CNN、LSTM和GRU,以确定哪种模子在心电信号分类任务上体现最佳。
项目概述
以下是项目标详细步调:
[*] 数据网络与预处理:
[*]下载并合并四个数据集。
[*]对数据进行清洗和预处理,包罗去噪、归一化等。
[*] 特性提取:
[*]将原始心电信号转换为得当模子输入的形式。
[*] 模子构建:
[*]构建CNN、LSTM和GRU模子。
[*]练习并评估每个模子的体现。
[*] 结果分析:
[*]比力不同模子的性能指标,如准确率、精确率、召回率、F1分数等。
[*] 可视化:
[*]可视化练习过程中的损失和准确率曲线。
[*]可视化肴杂矩阵。
[*] 摆设:
[*]创建一个简朴的GUI界面来进行及时猜测。
数据集下载与合并
首先,我们需要下载并合并四个数据集。这里假设你已经下载了这些数据集,并将它们存储在一个文件夹中。
数据集路径配置
% Configuration
data_folder = 'path/to/data'; % Path to the folder containing datasets
output_folder = 'path/to/output'; % Path to save preprocessed data and models
数据预处理
加载和预处理数据
[<title="Data Preprocessing for ECG Classification">]
function = preprocess_ecg_data(data_folder)
% Load datasets
mitbih_arrhythmia = load(fullfile(data_folder, 'mitbih_arrhythmia.mat'));
mitbih_st_change = load(fullfile(data_folder, 'mitbih_st_change.mat'));
eu_stt = load(fullfile(data_folder, 'eu_stt.mat'));
sudden_cardiac_death = load(fullfile(data_folder, 'sudden_cardiac_death.mat'));
% Extract signals and labels
signals = {};
labels = {};
% MIT-BIH Arrhythmia Database
if isfield(mitbih_arrhythmia, 'signals') && isfield(mitbih_arrhythmia, 'labels')
signals{end+1} = mitbih_arrhythmia.signals;
labels{end+1} = mitbih_arrhythmia.labels;
end
% MIT-BIH ST Change Database
if isfield(mitbih_st_change, 'signals') && isfield(mitbih_st_change, 'labels')
signals{end+1} = mitbih_st_change.signals;
labels{end+1} = mitbih_st_change.labels;
end
% EU ST-T Database
if isfield(eu_stt, 'signals') && isfield(eu_stt, 'labels')
signals{end+1} = eu_stt.signals;
labels{end+1} = eu_stt.labels;
end
% Sudden Cardiac Death Database
if isfield(sudden_cardiac_death, 'signals') && isfield(sudden_cardiac_death, 'labels')
signals{end+1} = sudden_cardiac_death.signals;
labels{end+1} = sudden_cardiac_death.labels;
end
% Concatenate all signals and labels
all_signals = vertcat(signals{:});
all_labels = vertcat(labels{:});
% Normalize signals
all_signals = zscore(all_signals);
% Split data into train, validation, and test sets
cv = cvpartition(size(all_signals, 1), 'HoldOut', 0.2);
idx_train = training(cv);
idx_test = test(cv);
X_train = all_signals(idx_train, :);
y_train = all_labels(idx_train);
X_test = all_signals(idx_test, :);
y_test = all_labels(idx_test);
% Further split training set into training and validation sets
cv_inner = cvpartition(sum(idx_train), 'HoldOut', 0.2);
idx_train_inner = training(cv_inner);
idx_val_inner = test(cv_inner);
X_val = X_train(idx_val_inner, :);
y_val = y_train(idx_val_inner);
X_train = X_train(idx_train_inner, :);
y_train = y_train(idx_train_inner);
end
模子构建与练习
我们将构建CNN、LSTM和GRU模子,并比力它们的性能。
CNN模子
[<title="CNN Model for ECG Classification">]
function model_cnn = build_cnn_model(input_shape, num_classes)
layers = [
inputLayer(input_shape)
convolution2dLayer(, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(num_classes)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'MiniBatchSize', 128, ...
'InitialLearnRate', 0.001, ...
'Plots', 'training-progress', ...
'Verbose', false);
model_cnn = trainNetwork(X_train, categorical(y_train), layers, options);
end
LSTM模子
[<title="LSTM Model for ECG Classification">]
function model_lstm = build_lstm_model(input_shape, num_classes)
layers = [
sequenceInputLayer(input_shape(2))
lstmLayer(128, 'OutputMode', 'last')
dropoutLayer(0.5)
fullyConnectedLayer(num_classes)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'GradientThreshold', 1, ...
'InitialLearnRate', 0.001, ...
'SequenceLength', 'longest', ...
'Plots', 'training-progress', ...
'Verbose', false);
model_lstm = trainNetwork(X_train, categorical(y_train), layers, options);
end
GRU模子
[<title="GRU Model for ECG Classification">]
function model_gru = build_gru_model(input_shape, num_classes)
layers = [
sequenceInputLayer(input_shape(2))
gruLayer(128, 'OutputMode', 'last')
dropoutLayer(0.5)
fullyConnectedLayer(num_classes)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'GradientThreshold', 1, ...
'InitialLearnRate', 0.001, ...
'SequenceLength', 'longest', ...
'Plots', 'training-progress', ...
'Verbose', false);
model_gru = trainNetwork(X_train, categorical(y_train), layers, options);
end
模子评估与结果分析
评估每个模子并在图表中展示的结果。
评估函数
[<title="Model Evaluation Function">]
function evaluate_models(model_cnn, model_lstm, model_gru, X_val, y_val)
% Evaluate CNN model
YPred_cnn = classify(model_cnn, X_val);
accuracy_cnn = sum(YPred_cnn == y_val) / numel(y_val);
disp(['CNN Accuracy: ', num2str(accuracy_cnn)]);
% Evaluate LSTM model
YPred_lstm = classify(model_lstm, X_val);
accuracy_lstm = sum(YPred_lstm == y_val) / numel(y_val);
disp(['LSTM Accuracy: ', num2str(accuracy_lstm)]);
% Evaluate GRU model
YPred_gru = classify(model_gru, X_val);
accuracy_gru = sum(YPred_gru == y_val) / numel(y_val);
disp(['GRU Accuracy: ', num2str(accuracy_gru)]);
% Plot confusion matrices
figure;
subplot(1, 3, 1);
cm_cnn = confusionchart(categorical(y_val), YPred_cnn);
title('Confusion Matrix (CNN)');
subplot(1, 3, 2);
cm_lstm = confusionchart(categorical(y_val), YPred_lstm);
title('Confusion Matrix (LSTM)');
subplot(1, 3, 3);
cm_gru = confusionchart(categorical(y_val), YPred_gru);
title('Confusion Matrix (GRU)');
end
主脚本 main_script.m
将全部步调整合到主脚本中。
[<title="Main Script for ECG Classification">]% Main Script for ECG Classification% This script preprocesses the ECG data, builds and trains CNN, LSTM, and GRU models,% evaluates their performance, and visualizes the results.clear;clc;% Configuration
data_folder = 'path/to/data'; % Path to the folder containing datasets
output_folder = 'path/to/output'; % Path to save preprocessed data and models
% Preprocess data = preprocess_ecg_data(data_folder);% Reshape data for CNNinput_shape_cnn = ;X_train_cnn = permute(X_train, );X_val_cnn = permute(X_val, );% Build and train CNN modelmodel_cnn = build_cnn_model(input_shape_cnn, length(unique(y_train)));% Build and train LSTM modelinput_shape_rnn = size(X_train, 2);model_lstm = build_lstm_model(input_shape_rnn, length(unique(y_train)));% Build and train GRU modelmodel_gru = build_gru_model(input_shape_rnn, length(unique(y_train)));% Evaluate modelsevaluate_models(model_cnn, model_lstm, model_gru, X_val_cnn, y_val); 利用说明
[*] 配置路径:
[*]将 data_folder 设置为存放数据集的目录路径。
[*]将 output_folder 设置为生存预处理数据和模子的目标目录路径。
[*] 运行脚本:
[*]在 MATLAB 命令窗口中运行 main_script.m。
[*]脚本会自动读取 data_folder 中的数据集,对数据进行预处理,构建并练习CNN、LSTM和GRU模子,并评估其性能。
[*] 注意事项:
[*]确保全部须要的工具箱已安装,特别是 Deep Learning Toolbox 和 Signal Processing Toolbox。
[*]根据需要调整参数,如 MaxEpochs 和 MiniBatchSize。
示例
假设你的数据文件夹结构如下:
data/
├── mitbih_arrhythmia.mat
├── mitbih_st_change.mat
├── eu_stt.mat
└── sudden_cardiac_death.mat
而且每个 .mat 文件中都有 signals 和 labels 变量。运行 main_script.m 后,MATLAB 将体现每个模子的准确性,并天生肴杂矩阵图表。
总结
通过上述 MATLAB 代码,你可以轻松地对心电信号进行分类,并对比不同模子的性能。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页:
[1]