守听 发表于 2025-3-17 07:40:25

FaceForensics++数据库下载(小白友好&超详细版教程)

FaceForensics++数据库下载(超详细版教程)

相信很多做deepfake相关研究的朋侪,在对模型举行测试或者对潜前人的研究举行复现时,都必要下载一系列数据库并举行预处置惩罚等操纵,而FaceForensics++数据库是一个由数千个利用不同DeepFake方法操纵的视频组成,并包含四个假子数据集,即DeepFake Detection (DFD), DeepFake (DF), Face2Face (F2F)和FaceSwap (FS)。
这里提供一个本人切身利用过并下载完成后的方法(会提供下载脚本,笔者本身也是小白所以说的会非常详细而且简朴易懂)。
找到dataset的README文件

进入github上搜索到FaceForensics++数据库的README文件,网址如下:
[数据库GitHub上有关数据库部门的阐明文件网址]: FaceForensics/dataset/README.md at master · ondyari/FaceForensics (github.com)(https://github.com/ondyari/FaceForensics/blob/master/dataset/README.md)
README文件对数据库的下载和组成部门,包括各个数据库所必要占用空间的大小做了详细的阐明(其中的C23和C40代表压缩参数):
https://i-blog.csdnimg.cn/blog_migrate/8f93a91786b017461620c8333860d8e6.png#pic_center
注意:接下来的操纵都必要在挂署理的前提下实现
获取下载脚本并并保存到本地

下载脚本的获取,必要填写一个README文件上面提供的表单,链接如下:
当然,你也可以通过README文件的以下语句中的蓝字进入该链接
https://i-blog.csdnimg.cn/blog_migrate/a076ee08d4aa14734e24fa7608eb0a1b.png#pic_center
表单上注意填写好自己的邮箱(qq邮箱是可以的),其他的可以随便填一下,大概就是用英文稍微介绍一下自己的项目,笔者这里随便填的,没有任何问题。
发送表单以后,会收到一封来自数据集研发者的邮件,上面会提供他们研发的一系列的数据集,包括FaceForensics++的下载脚本链接和Github链接,如下:
https://i-blog.csdnimg.cn/blog_migrate/51d6adddbe31e7e4532d6ecb2aa2e6f7.png#pic_center
点击第一个“here”进入脚本页,我这里是直接把脚本复制,然后在电脑桌面建立一个txt文件并把脚本粘进去,接着把文件后缀名称改为“.py”即可。
CMD窗口下载数据库

打开cmd窗口
确保你的文件定名为FaceForensics++.py并保存在你的桌面(当然也可以是别的名字,也可以保存到别的地方,但是为了后面下令可以简朴一点笔者以为最好放在桌面)
Cmd窗口输入下令:
cd Desktop
接着cmd窗口会表现已经进入桌面,接着输入下载下令:
下面是对github上对于下载下令的表明(包括的各部门的寄义):
python FaceForensics++.py
//前面的python指你的电脑本身的python.exe文件,注意并不一定是“python”,需要观察你自己下载的python中的pythin.exe文件的命名是什么,比如笔者下载的python运行文件的命名是python3.11.exe,所以这里就应该python3.11
    <output path>
    //这里意思是数据下载的地址,即你的数据集要放在哪里(注意存储空间要足够)
    -d <dataset type, e.g., Face2Face, original or all>
    //如果你要下载FaceForensics++全部直接-all即可,也可以选择FaceForensics++数据集其中的一项来下载
    -c <compression quality, e.g., c23 or raw>
    //这里指压缩参数选择,如果想要下载原始数据可以选-raw,笔者下载的是-23压缩版
    -t <file type, e.g., videos, masks or models>
    //文件下载的类型-video即可下载deepfake的video
注意,第一个下令可以尝试在你的cmd窗口直接输入python看看是否是你的python运行文件名称,好比当笔者在cmd窗口输入"python3.11"时,会输出:
https://i-blog.csdnimg.cn/blog_migrate/d2d812ef913372d42ce44c070a0f2519.png#pic_center
就阐明我的第一个下令应该是"python3.11",也就是利用python编译运行我们的脚本文件
好比,要在D盘上的FaceForensics++文件里下载FaceForensics++数据集全部视频,以C23参数压缩,下令可以是:
python3.11 FaceForensics.py E:/FaceForensics++ -d all -c c23 -t videos
注意,运行过程中如果出现“502 BadGateway”提示,可能是你的服务不能利用脚本默认的,而是必要更改,脚本里面提供了三个server可供选择,分别是EU,EU2和CA,对应了欧洲1,2和加拿大,默认利用的是EU,脚本这部门代码如下:
parser.add_argument('--server', type=str, default='EU',
                        help='Server to download the data from. If you '
                           'encounter a slow download speed, consider '
                           'changing the server.',
                        choices=SERVERS
                        )
    args = parser.parse_args()

    # URLs
    server = args.server
    if server == 'EU':
      server_url = 'http://canis.vc.in.tum.de:8100/'
    elif server == 'EU2':
      server_url = 'http://kaldir.vc.in.tum.de/faceforensics/'
    elif server == 'CA':
      server_url = 'http://falas.cmpt.sfu.ca:8100/'
    else:
      raise Exception('Wrong server name. Choices: {}'.format(str(SERVERS)))
    args.tos_url = server_url + 'webpage/FaceForensics_TOS.pdf'
    args.base_url = server_url + 'v3/'
    args.deepfakes_model_url = server_url + 'v3/manipulated_sequences/' + \
                               'Deepfakes/models/'

    return args
所以,在你的CMD窗口可以指定以下server,笔者在出错以后,将server改为EU2就可以顺遂下载,总体下令如下:
cd Desktop
#回车python3.11 FaceForensics.py E:/FaceForensics++ --server EU2 -d all -c c23 -t videos PS:–server EU2即指定server为EU2
接下来数据就会开始下载(会有进度条表现下载情况),如下图:
https://i-blog.csdnimg.cn/blog_migrate/bfd2eca91da49b2b0f00be8358cd04a0.png#pic_center
由于挂署理,所以可能会出现不稳固的克制下载的情况,如果碰到程序停止,没有关系,确保网络、署理精确连接后重新输入下载下令即可,它会主动跳过已经下载好的文件,继续下载其他文件。
建议下载数据集时只管包管网速较快,而且署理稳固(否则一停止就重新输入一遍下令很麻烦)。
脚本

附:邮件提供的FaceForensics++脚本如下:
#!/usr/bin/env python""" Downloads FaceForensics++ and Deep Fake Detection public data releaseExample usage:    see -h or https://github.com/ondyari/FaceForensics"""# -*- coding: utf-8 -*-import argparseimport osimport urllibimport urllib.requestimport tempfileimport timeimport sysimport jsonimport randomfrom tqdm import tqdmfrom os.path import join# URLs and filenamesFILELIST_URL = 'misc/filelist.json'DEEPFEAKES_DETECTION_URL = 'misc/deepfake_detection_filenames.json'DEEPFAKES_MODEL_NAMES = ['decoder_A.h5', 'decoder_B.h5', 'encoder.h5',]# ParametersDATASETS = {    'original_youtube_videos': 'misc/downloaded_youtube_videos.zip',    'original_youtube_videos_info': 'misc/downloaded_youtube_videos_info.zip',    'original': 'original_sequences/youtube',    'DeepFakeDetection_original': 'original_sequences/actors',    'Deepfakes': 'manipulated_sequences/Deepfakes',    'DeepFakeDetection': 'manipulated_sequences/DeepFakeDetection',    'Face2Face': 'manipulated_sequences/Face2Face',    'FaceShifter': 'manipulated_sequences/FaceShifter',    'FaceSwap': 'manipulated_sequences/FaceSwap',    'NeuralTextures': 'manipulated_sequences/NeuralTextures'    }ALL_DATASETS = ['original', 'DeepFakeDetection_original', 'Deepfakes',                'DeepFakeDetection', 'Face2Face', 'FaceShifter', 'FaceSwap',                'NeuralTextures']COMPRESSION = ['raw', 'c23', 'c40']TYPE = ['videos', 'masks', 'models']SERVERS = ['EU', 'EU2', 'CA']def parse_args():    parser = argparse.ArgumentParser(      description='Downloads FaceForensics v2 public data release.',      formatter_class=argparse.ArgumentDefaultsHelpFormatter    )    parser.add_argument('output_path', type=str, help='Output directory.')    parser.add_argument('-d', '--dataset', type=str, default='all',                        help='Which dataset to download, either pristine or '                           'manipulated data or the downloaded youtube '                           'videos.',                        choices=list(DATASETS.keys()) + ['all']                        )    parser.add_argument('-c', '--compression', type=str, default='raw',                        help='Which compression degree. All videos '                           'have been generated with h264 with a varying '                           'codec. Raw (c0) videos are lossless compressed.',                        choices=COMPRESSION                        )    parser.add_argument('-t', '--type', type=str, default='videos',                        help='Which file type, i.e. videos, masks, for our '                           'manipulation methods, models, for Deepfakes.',                        choices=TYPE                        )    parser.add_argument('-n', '--num_videos', type=int, default=None,                        help='Select a number of videos number to '                           "download if you don't want to download the full"                           ' dataset.')    parser.add_argument('--server', type=str, default='EU',
                        help='Server to download the data from. If you '
                           'encounter a slow download speed, consider '
                           'changing the server.',
                        choices=SERVERS
                        )
    args = parser.parse_args()

    # URLs
    server = args.server
    if server == 'EU':
      server_url = 'http://canis.vc.in.tum.de:8100/'
    elif server == 'EU2':
      server_url = 'http://kaldir.vc.in.tum.de/faceforensics/'
    elif server == 'CA':
      server_url = 'http://falas.cmpt.sfu.ca:8100/'
    else:
      raise Exception('Wrong server name. Choices: {}'.format(str(SERVERS)))
    args.tos_url = server_url + 'webpage/FaceForensics_TOS.pdf'
    args.base_url = server_url + 'v3/'
    args.deepfakes_model_url = server_url + 'v3/manipulated_sequences/' + \
                               'Deepfakes/models/'

    return args
def download_files(filenames, base_url, output_path, report_progress=True):    os.makedirs(output_path, exist_ok=True)    if report_progress:      filenames = tqdm(filenames)    for filename in filenames:      download_file(base_url + filename, join(output_path, filename))def reporthook(count, block_size, total_size):    global start_time    if count == 0:      start_time = time.time()      return    duration = time.time() - start_time    progress_size = int(count * block_size)    speed = int(progress_size / (1024 * duration))    percent = int(count * block_size * 100 / total_size)    sys.stdout.write("\rProgress: %d%%, %d MB, %d KB/s, %d seconds passed" %                     (percent, progress_size / (1024 * 1024), speed, duration))    sys.stdout.flush()def download_file(url, out_file, report_progress=False):    out_dir = os.path.dirname(out_file)    if not os.path.isfile(out_file):      fh, out_file_tmp = tempfile.mkstemp(dir=out_dir)      f = os.fdopen(fh, 'w')      f.close()      if report_progress:            urllib.request.urlretrieve(url, out_file_tmp,                                       reporthook=reporthook)      else:            urllib.request.urlretrieve(url, out_file_tmp)      os.rename(out_file_tmp, out_file)    else:      tqdm.write('WARNING: skipping download of existing file ' + out_file)def main(args):    # TOS    print('By pressing any key to continue you confirm that you have agreed '\          'to the FaceForensics terms of use as described at:')    print(args.tos_url)    print('***')    print('Press any key to continue, or CTRL-C to exit.')    _ = input('')    # Extract arguments    c_datasets = if args.dataset != 'all' else ALL_DATASETS    c_type = args.type    c_compression = args.compression    num_videos = args.num_videos    output_path = args.output_path    os.makedirs(output_path, exist_ok=True)    # Check for special dataset cases    for dataset in c_datasets:      dataset_path = DATASETS      # Special cases      if 'original_youtube_videos' in dataset:            # Here we download the original youtube videos zip file            print('Downloading original youtube videos.')            if not 'info' in dataset_path:                print('Please be patient, this may take a while (~40gb)')                suffix = ''            else:                    suffix = 'info'            download_file(args.base_url + '/' + dataset_path,                        out_file=join(output_path,                                        'downloaded_videos{}.zip'.format(                                          suffix)),                        report_progress=True)            return      # Else: regular datasets      print('Downloading {} of dataset "{}"'.format(            c_type, dataset_path      ))      # Get filelists and video lenghts list from server      if 'DeepFakeDetection' in dataset_path or 'actors' in dataset_path:              filepaths = json.loads(urllib.request.urlopen(args.base_url + '/' +                DEEPFEAKES_DETECTION_URL).read().decode("utf-8"))              if 'actors' in dataset_path:                      filelist = filepaths['actors']              else:                      filelist = filepaths['DeepFakesDetection']      elif 'original' in dataset_path:            # Load filelist from server            file_pairs = json.loads(urllib.request.urlopen(args.base_url + '/' +                FILELIST_URL).read().decode("utf-8"))            filelist = []            for pair in file_pairs:                    filelist += pair      else:            # Load filelist from server            file_pairs = json.loads(urllib.request.urlopen(args.base_url + '/' +                FILELIST_URL).read().decode("utf-8"))            # Get filelist            filelist = []            for pair in file_pairs:                filelist.append('_'.join(pair))                if c_type != 'models':                  filelist.append('_'.join(pair[::-1]))      # Maybe limit number of videos for download      if num_videos is not None and num_videos > 0:              print('Downloading the first {} videos'.format(num_videos))              filelist = filelist[:num_videos]      # Server and local paths      dataset_videos_url = args.base_url + '{}/{}/{}/'.format(            dataset_path, c_compression, c_type)      dataset_mask_url = args.base_url + '{}/{}/videos/'.format(            dataset_path, 'masks', c_type)      if c_type == 'videos':            dataset_output_path = join(output_path, dataset_path, c_compression,                                       c_type)            print('Output path: {}'.format(dataset_output_path))            filelist =             download_files(filelist, dataset_videos_url, dataset_output_path)      elif c_type == 'masks':            dataset_output_path = join(output_path, dataset_path, c_type,                                       'videos')            print('Output path: {}'.format(dataset_output_path))            if 'original' in dataset:                if args.dataset != 'all':                  print('Only videos available for original data. Aborting.')                  return                else:                  print('Only videos available for original data. '                        'Skipping original.\n')                  continue            if 'FaceShifter' in dataset:                print('Masks not available for FaceShifter. Aborting.')                return            filelist =             download_files(filelist, dataset_mask_url, dataset_output_path)      # Else: models for deepfakes      else:            if dataset != 'Deepfakes' and c_type == 'models':                print('Models only available for Deepfakes. Aborting')                return            dataset_output_path = join(output_path, dataset_path, c_type)            print('Output path: {}'.format(dataset_output_path))            # Get Deepfakes models            for folder in tqdm(filelist):                folder_filelist = DEEPFAKES_MODEL_NAMES                # Folder paths                folder_base_url = args.deepfakes_model_url + folder + '/'                folder_dataset_output_path = join(dataset_output_path,                                                folder)                download_files(folder_filelist, folder_base_url,                               folder_dataset_output_path,                               report_progress=False)   # already doneif __name__ == "__main__":    args = parse_args()    main(args)
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页: [1]
查看完整版本: FaceForensics++数据库下载(小白友好&超详细版教程)