Ubuntu22.04安装视觉环境(CUDA CUDNN TensorRT realsense PCL OpenCV)
一、安装显卡驱动先安装编译器
sudo apt install gcc g++ make cmake nvidia驱动官网:Download The Official NVIDIA Drivers | NVIDIA
选择自己显卡和体系版本,并选择符合驱动
https://i-blog.csdnimg.cn/direct/d79daad0707e4419b3bb40c34bf82df7.png
目前最新保举安装驱动为Linux x64 (AMD64/EM64T) Display Driver 570.124.04 | Linux 64-bit
下载驱动,在终端中运行
sudo sh ./NVIDIA-Linux-x86_64-570.124.04.run 之后根据提示举行选择
Multiple kernel module types are available for this system. Which would you like to use?
选择 NVIDIA Proprietary
Install NVIDIA's 32-bit compatibility libraries?
选择 No
这两个留意一下,其他要么Continue要么OK
安装完成后,重启电脑
sudo reboot 验证安装:
nvidia-smi 结果:
Sun Mar 16 20:15:03 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.124.04 Driver Version: 570.124.04 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPUName Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| FanTemp Perf Pwr:Usage/Cap | Memory-Usage | GPU-UtilCompute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0NVIDIA GeForce RTX 4060 ... Off | 00000000:01:00.0On | N/A |
| N/A 39C P8 4W / 80W | 547MiB / 8188MiB | 3% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
|GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/AN/A 935 G /usr/lib/xorg/Xorg 216MiB |
| 0 N/AN/A 1171 G /usr/bin/gnome-shell 48MiB |
| 0 N/AN/A 3036 G ...pareRendererForSitePerProcess 90MiB |
| 0 N/AN/A 10457 G ...144 --variations-seed-version 133MiB |
| 0 N/AN/A 13721 G ...OTP --variations-seed-version 12MiB |
+-----------------------------------------------------------------------------------------+
这里的CUDA版本是当前驱动支持的最高版本,不是现实版本,我们根据现实需求选择要安装的CUDA版本
二、CUDA安装
CUDA CUDNN TensorRT版本需要对应上 我选择目前比较常用的CUDA-11.8
官网上一般只有最新的CUDA,老版本在右下角Archive of Previous CUDA Releases里
https://i-blog.csdnimg.cn/direct/fda3a3e9c9624bb88f9e926a08d5a0e5.png
根据体系信息选择符合选项
https://i-blog.csdnimg.cn/direct/4164f5670c21430f82c4b9af42bacdef.png
将下面生成的代码在终端中运行:
# 下载.run文件
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
# 运行
sudo sh cuda_11.8.0_520.61.05_linux.run 出现
┌──────────────────────────────────────────────────────────────────────────────┐
│End User License Agreement │
│-------------------------- │
│ │
│NVIDIA Software License Agreement and CUDA Supplement to │
│Software License Agreement. Last updated: October 8, 2021 │
│ │
│The CUDA Toolkit End User License Agreement applies to the │
│NVIDIA CUDA Toolkit, the NVIDIA CUDA Samples, the NVIDIA │
│Display Driver, NVIDIA Nsight tools (Visual Studio Edition), │
│and the associated documentation on CUDA APIs, programming │
│model and development tools. If you do not agree with the │
│terms and conditions of the license agreement, then do not │
│download or use the software. │
│ │
│Last updated: October 8, 2021. │
│ │
│ │
│Preface │
│------- │
│ │
│──────────────────────────────────────────────────────────────────────────────│
│ Do you accept the above EULA? (accept/decline/quit): │
│ │
└──────────────────────────────────────────────────────────────────────────────┘
在最下面输入accept(屏幕分辨率太小可能找不到输入的地方,换一块大表现器吧)
用上下箭头和回车键选择安装内容如下(不安装驱动):
┌──────────────────────────────────────────────────────────────────────────────┐
│ CUDA Installer │
│ - [ ] Driver │
│ [ ] 520.61.05 │
│ + CUDA Toolkit 11.8 │
│ CUDA Demo Suite 11.8 │
│ CUDA Documentation 11.8 │
│ - [ ] Kernel Objects │
│ [ ] nvidia-fs │
│ Options │
│ Install │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ Up/Down: Move | Left/Right: Expand | 'Enter': Select | 'A': Advanced options │
└──────────────────────────────────────────────────────────────────────────────┘
高光移动到Install上,按回车键,稍等片刻,安装乐成
===========
= Summary =
===========
Driver: Not Selected
Toolkit:Installed in /usr/local/cuda-11.8/
Please make sure that
- PATH includes /usr/local/cuda-11.8/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-11.8/lib64, or, add /usr/local/cuda-11.8/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.8/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 520.00 is required for CUDA 11.8 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run --silent --driver
Logfile is /var/log/cuda-installer.log
编辑环境变量:
gedit ~/.bashrc 在末尾添加:
# cuda-11.8
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=/usr/local/cuda 保存并退出,刷新环境变量:
source ~/.bashrc 验证安装:
nvcc -V 结果:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0 CUDA 安装乐成
三、安装CUDNN
官网:cuDNN Archive | NVIDIA Developer
我选择8.9.7版本
https://i-blog.csdnimg.cn/direct/c333c37a76d3408aad9b30b4b4b5dbdb.png
留意:CUDNN每个版本都有对应的CUDA11和CUDA12版本,要和自己CUDA版本对应上
CUDNN8.9.7 Ubuntu22.04 x86-64下载地址:
cudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb
要先登岸nvidia账号才能下载
安装:
sudo dpkg -i cudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb 根据安装结束后的提示安装key:
sudo cp /var/cudnn-local-repo-ubuntu2204-8.9.7.29/cudnn-local-8AE81B24-keyring.gpg /usr/share/keyrings/
再安装以下内容:
sudo apt-get update
sudo apt-get install libcudnn8=8.9.7.29-1+cuda11.8
sudo apt-get install libcudnn8-dev=8.9.7.29-1+cuda11.8
sudo apt-get install libcudnn8-samples=8.9.7.29-1+cuda11.8 将文件复制到cuda目录:
sudo cp /usr/include/cudnn*.h /usr/local/cuda/include/
sudo cp /usr/lib/x86_64-linux-gnu/libcudnn* /usr/local/cuda/lib64/ 验证安装:
sudo apt-get install libfreeimage3 libfreeimage-dev
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd $HOME/cudnn_samples_v8/mnistCUDNN
make clean && make
./mnistCUDNN 出现 Test passed! 验证通过
四、TensorRT
官网:TensorRT SDK | NVIDIA Developer
官方教程:Installing TensorRT — NVIDIA TensorRT Documentation
我选择8.5.1.7版本 下载地址:TensorRT-8.x Download
选择 TensorRT 8.5 GA for Linux x86_64 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8 TAR Package
下载完成后解压到主目录,将文件链接到体系中,记得将<user_name>改成自己用户名
sudo ln -s /home/<user_name>/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/targets/x86_64-linux-gnu/lib/libnvinfer.so /usr/lib/libnvinfer.so
sudo ln -s /home/<user_name>/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/targets/x86_64-linux-gnu/lib/libnvinfer.so /usr/lib/libnvinfer.so.8
sudo ln -s /home/<user_name>/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/targets/x86_64-linux-gnu/lib/libnvinfer_plugin.so /usr/lib/libnvinfer_plugin.so
sudo ln -s /home/<user_name>/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/targets/x86_64-linux-gnu/lib/libnvinfer_plugin.so /usr/lib/libnvinfer_plugin.so.8
编辑环境变量:
gedit ~/.bashrc 添加以下内容:
# tensorrt
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/action/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/targets/x86_64-linux-gnu/lib 刷新环境变量:
source ~/.bashrc 五、OpenCV
官网地址:Releases - OpenCV
下载所需版本,把文件夹复制到主目录然后执行以下命令,根据自己的版本信息修改cuda和cudnn版本以及 cuda_arch_bin(显卡算力)CUDA GPUs - Compute Capability | NVIDIA Developer
cd ~/opencv
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D OPENCV_ENABLE_NONFREE=ON \
-D WITH_CUDA=ON \
-D WITH_CUDNN=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_LIBV4L=ON \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D CUDA_ARCH_BIN=8.9 \
-D WITH_CUBLAS=1 \
-D CUDNN_VERSION=8.9.7 \
-D CUDNN_INCLUDE_DIR=/usr/local/cuda/include \
-D CUDNN_LIBRARY=/usr/local/cuda-11.8/lib64/libcudnn.so.8.9.7 \
-D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib/modules ..
lscpu # 查看核数量
make -j8 # 根据核数量修改 -j8就是8核编译
sudo make install 安装过程比较长,内存不够就调小核心数
六、librealsense
Github地址:https://github.com/IntelRealSense/librealsense
L515最后支持版本:https://github.com/IntelRealSense/librealsense/releases/tag/v2.54.2
安装教程:librealsense/doc/installation.md at master · IntelRealSense/librealsense · GitHub
下载源码(Source Code)并解压到主目录
安装:
sudo apt-get update && sudo apt-get upgrade && sudo apt-get dist-upgrade
sudo apt-get install libssl-dev libusb-1.0-0-dev libudev-dev pkg-config libgtk-3-dev
sudo apt-get install git wget cmake build-essential
sudo apt-get install libglfw3-dev libgl1-mesa-dev libglu1-mesa-dev at
cd ~/librealsense-2.54.2/
sudo ./scripts/setup_udev_rules.sh
mkdir build && cd build
cmake ../ -DBUILD_EXAMPLES=true
make -j8
sudo make install 验证安装:
realsense-viewer 七、PCL
Github地址:GitHub - PointCloudLibrary/pcl: Point Cloud Library (PCL)
Ubuntu22.04自带1.12版本,我们要装1.13 Release PCL 1.13.1 · PointCloudLibrary/pcl · GitHub
下载源码并解压到主目录
安装:
cd ~/pcl-1.13.1
mkdir build && cd build
cmake ..
make -j4
sudo make install 留意:pcl编译需要相当大的内存空间,16GB内存建议将核心数调整为4或以下,32GB内存可尝试8核心编译
编辑环境变量:
gedit ~/.bashrc 在末尾添加:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib 刷新环境变量:
source ~/.bashrc
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页:
[1]