愛在花開的季節 发表于 2023-2-13 00:43:43

[​DuckDB] 多核算子并行的源码解析

DuckDB 是近年来颇受关注的OLAP数据库,号称是OLAP领域的SQLite,以精巧简单,性能优异而著称。笔者前段时间在调研Doris的Pipeline的算子并行方案,而DuckDB基于论文《Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-Core Age》实现SQL算子的高效并行化的Pipeline执行引擎,所以笔者花了一些时间进行了学习和总结,这里结合了Mark Raasveldt进行的分享和原始代码来一一剖析DuckDB在执行算子并行上的具体实现。
1. 基础知识

问题1:并行task的数目由什么决定 ?
https://ask8088-private-1251520898.cos.ap-guangzhou.myqcloud.com/developer-images/article/3016042/p5kvu1bnj7.png?q-sign-algorithm=sha1&q-ak=AKID2uZ1FGBdx1pNgjE3KK4YliPpzyjLZvug&q-sign-time=1676181627%3B1676188827&q-key-time=1676181627%3B1676188827&q-header-list=&q-url-param-list=&q-signature=122eaf0a73c6e5e9763ae3b3c353390b71634fab
Pipeline的核心是:Morsel-Driven,数据是拆分成了小部分的数据。所以并行Task的核心是:能够利用多线程来处理数据,每一个数据拆分为小部分,所以拆分并行的数目由Source决定。
DuckDB在GlobalSource上实现了一个虚函数MaxThread来决定task数目:
https://ask8088-private-1251520898.cos.ap-guangzhou.myqcloud.com/developer-images/article/3016042/9shmbuzqpw.png?q-sign-algorithm=sha1&q-ak=AKID2uZ1FGBdx1pNgjE3KK4YliPpzyjLZvug&q-sign-time=1676181627%3B1676188827&q-key-time=1676181627%3B1676188827&q-header-list=&q-url-param-list=&q-signature=b89662138405612d3f04a1fcc0d97fe30c549750
每一个算子的GlobalSource抽象了自己的并行度:
https://ask8088-private-1251520898.cos.ap-guangzhou.myqcloud.com/developer-images/article/3016042/km2b6oq7zi.png?q-sign-algorithm=sha1&q-ak=AKID2uZ1FGBdx1pNgjE3KK4YliPpzyjLZvug&q-sign-time=1676181627%3B1676188827&q-key-time=1676181627%3B1676188827&q-header-list=&q-url-param-list=&q-signature=6a1668a6635facad8d938cec6d9618de36083081
问题2:并行task的怎么样进行多线程同步:

[*]多线程的竞争只会发生在SinkOperator上,也就是Pipeline的尾端。
[*]parallelism-aware的算法需要实现在Sink端
[*]其他的非Sink operators (比如:Hash Join Probe, Projection, Filter等), 不需要感知多线程同步的问题
https://ask8088-private-1251520898.cos.ap-guangzhou.myqcloud.com/developer-images/article/3016042/0sfhmllvq2.png?q-sign-algorithm=sha1&q-ak=AKID2uZ1FGBdx1pNgjE3KK4YliPpzyjLZvug&q-sign-time=1676181627%3B1676188827&q-key-time=1676181627%3B1676188827&q-header-list=&q-url-param-list=&q-signature=620ffe00c33e699e8a1c0f0eab8ab2ca0ee00302
问题3:DuckDB的是如何抽象接口的:
Sink的Opeartor 定义了两种类型:GlobalState, LocalState

[*]GlobalState: 每个查询的Operator全局只有一个GlobalSinkState,记录全局部分的信息
class PhysicalOperator {
public:
        unique_ptr<GlobalSinkState> sink_state;
[*]LocalState: 每个查询的PipelineExecutor都有一个LocalSinkState,都是局部私有
//! The Pipeline class represents an execution pipeline
class PipelineExecutor {
private:
        //! The local sink state (if any)
        unique_ptr<LocalSinkState> local_sink_state;后续会详细解析不同的sink之间的LocalState和GlobalState如何配合的,核心部分如下:
https://ask8088-private-1251520898.cos.ap-guangzhou.myqcloud.com/developer-images/article/3016042/axyqp7l0t7.png?q-sign-algorithm=sha1&q-ak=AKID2uZ1FGBdx1pNgjE3KK4YliPpzyjLZvug&q-sign-time=1676181627%3B1676188827&q-key-time=1676181627%3B1676188827&q-header-list=&q-url-param-list=&q-signature=1e50a1a3d2327ed4053ec72cb2873c7a4705a8e4
Sink :处理LocalState的数据
Combine:合并LocalState到GlobalState之中
2. 核心算子的并行

这部分进行各个算子的源码剖析,笔者在源码的关键部分加上了中文注释,以方便大家的理解
Sort算子


[*]Sink接口:这里需要注意的是DuckDB排序是进行了列转行的工作的,后续读取时需要行转列。Sink这部分相当于实现了部分数据的排序工作。
SinkResultType PhysicalOrder::Sink(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p,
                                 DataChunk &input) const {
        auto &lstate = (OrderLocalSinkState &)lstate_p;
      
      // keys 是排序的列block,payload是输出的排序后数据,这里调用LocalState的SinkChunk,进行数据的转行,
        local_sort_state.SinkChunk(keys, payload);

        // 数据达到内存阈值的时候进行基数排序处理,排序之后的结果存入LocalState的本地的SortedBlock中
        if (local_sort_state.SizeInBytes() >= gstate.memory_per_thread) {
                local_sort_state.Sort(global_sort_state, true);
        }
        return SinkResultType::NEED_MORE_INPUT;
}

[*]Combine接口: 加锁,拷贝sorted block到Global State
void PhysicalOrder::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const {
        auto &gstate = (OrderGlobalSinkState &)gstate_p;
        auto &lstate = (OrderLocalSinkState &)lstate_p;
      // 排序剩余内存中不满的数据
        local_sort_state.Sort(*this, external || !local_sort_state.sorted_blocks.empty());

        // Append local state sorted data to this global state
        lock_guard<mutex> append_guard(lock);
        for (auto &sb : local_sort_state.sorted_blocks) {
                sorted_blocks.push_back(move(sb));
        }
}

[*]MergeTask:启动核数相同的task来进行Merge (这里可以看出DuckDB对于多线程的使用是很激进的), 这里是通过Event的机制实现的
void Schedule() override {
                auto &context = pipeline->GetClientContext();
                idx_t num_threads = ts.NumberOfThreads();

                vector<unique_ptr<Task>> merge_tasks;
                for (idx_t tnum = 0; tnum < num_threads; tnum++) {
                        merge_tasks.push_back(make_unique<PhysicalOrderMergeTask>(shared_from_this(), context, gstate));
                }
                SetTasks(move(merge_tasks));
        }

class PhysicalOrderMergeTask : public ExecutorTask {
public:
        TaskExecutionResult ExecuteTask(TaskExecutionMode mode) override {
                // Initialize merge sorted and iterate until done
                auto &global_sort_state = state.global_sort_state;
                MergeSorter merge_sorter(global_sort_state, BufferManager::GetBufferManager(context));
               
      // 加锁,获取两路,不断进行两路归并,最终完成全局排序。
        while (true) {
                {
                        lock_guard<mutex> pair_guard(state.lock);
                        if (state.pair_idx == state.num_pairs) {
                                break;
                        }
                        GetNextPartition();
                }
                MergePartition();
        }
                event->FinishTask();
                return TaskExecutionResult::TASK_FINISHED;
        }聚合算子(这里分析的是Prefetch Agg Operator算子)


[*]Sink接口:和Sort算子一样,这里拆分为Group Chunk和Aggregate Input Chunk,可以理解为代表聚合时的key与value列。注意此时Sink接口上的聚合是在LocalSinkState上完成的。
SinkResultType PhysicalPerfectHashAggregate::Sink(ExecutionContext &context, GlobalSinkState &state,
                                                LocalSinkState &lstate_p, DataChunk &input) const {
        lstate.ht->AddChunk(group_chunk, aggregate_input_chunk);
}


void PerfectAggregateHashTable::AddChunk(DataChunk &groups, DataChunk &payload) {
        auto address_data = FlatVector::GetData<uintptr_t>(addresses);
        memset(address_data, 0, groups.size() * sizeof(uintptr_t));
        D_ASSERT(groups.ColumnCount() == group_minima.size());

        // 计算group key列对应的entry的位置
        idx_t current_shift = total_required_bits;
        for (idx_t i = 0; i < groups.ColumnCount(); i++) {
                current_shift -= required_bits;
                ComputeGroupLocation(groups.data, group_minima, address_data, current_shift, groups.size());
        }

        // 通过data加上面的entry位置 + tuple的偏移量,计算出对应的内存地址,并进行init
        idx_t needs_init = 0;
        for (idx_t i = 0; i < groups.size(); i++) {
                D_ASSERT(address_data < total_groups);
                const auto group = address_data;
                address_data = uintptr_t(data) + address_data * tuple_size;
        }
        RowOperations::InitializeStates(layout, addresses, sel, needs_init);

        // after finding the group location we update the aggregates
        idx_t payload_idx = 0;
        auto &aggregates = layout.GetAggregates();
        for (idx_t aggr_idx = 0; aggr_idx < aggregates.size(); aggr_idx++) {
                auto &aggregate = aggregates;
                auto input_count = (idx_t)aggregate.child_count;
                // 进行聚合的Update操作
                RowOperations::UpdateStates(aggregate, addresses, payload, payload_idx, payload.size());
        }
}

[*]Combine接口: 加锁,merge local hash table 与 global hash table
void PhysicalPerfectHashAggregate::Combine(ExecutionContext &context, GlobalSinkState &gstate_p,
                                           LocalSinkState &lstate_p) const {
        auto &lstate = (PerfectHashAggregateLocalState &)lstate_p;
        auto &gstate = (PerfectHashAggregateGlobalState &)gstate_p;

        lock_guard<mutex> l(gstate.lock);
        gstate.ht->Combine(*lstate.ht);
}      // local state的地址vector
        Vector source_addresses(LogicalType::POINTER);
       // global state的地址vector
        Vector target_addresses(LogicalType::POINTER);
        auto source_addresses_ptr = FlatVector::GetData<data_ptr_t>(source_addresses);
        auto target_addresses_ptr = FlatVector::GetData<data_ptr_t>(target_addresses);

        // 遍历所有hash table的表,然后进行合并对应能够合并的key
        data_ptr_t source_ptr = other.data;
        data_ptr_t target_ptr = data;
        idx_t combine_count = 0;
        idx_t reinit_count = 0;
        const auto &reinit_sel = *FlatVector::IncrementalSelectionVector();
        for (idx_t i = 0; i < total_groups; i++) {
                auto has_entry_source = other.group_is_set;
                // we only have any work to do if the source has an entry for this group
                if (has_entry_source) {
                        auto has_entry_target = group_is_set;
                        if (has_entry_target) {
                                // both source and target have an entry: need to combine
                                source_addresses_ptr = source_ptr;
                                target_addresses_ptr = target_ptr;
                                combine_count++;
                                if (combine_count == STANDARD_VECTOR_SIZE) {
                                        RowOperations::CombineStates(layout, source_addresses, target_addresses, combine_count);
                                        combine_count = 0;
                                }
                        } else {
                                group_is_set = true;
                                // only source has an entry for this group: we can just memcpy it over
                                memcpy(target_ptr, source_ptr, tuple_size);
                                // we clear this entry in the other HT as we "consume" the entry here
                                other.group_is_set = false;
                        }
                }
                source_ptr += tuple_size;
                target_ptr += tuple_size;
        }

      // 做对应的merge操作
        RowOperations::CombineStates(layout, source_addresses, target_addresses, combine_count);Join算子


[*]Sink接口:和Sort算子一样,注意此时Sink接口上的hash 表是在LocalSinkState上完成的。
SinkResultType PhysicalHashJoin::Sink(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p,
                                    DataChunk &input) const {
        auto &gstate = (HashJoinGlobalSinkState &)gstate_p;
        auto &lstate = (HashJoinLocalSinkState &)lstate_p;

        lstate.join_keys.Reset();
        lstate.build_executor.Execute(input, lstate.join_keys);
        // build the HT
        auto &ht = *lstate.hash_table;
        if (!right_projection_map.empty()) {
                // there is a projection map: fill the build chunk with the projected columns
                lstate.build_chunk.Reset();
                lstate.build_chunk.SetCardinality(input);
                for (idx_t i = 0; i < right_projection_map.size(); i++) {
                        lstate.build_chunk.data.Reference(input.data]);
                }
                // 构建local state的hash 表
                ht.Build(lstate.join_keys, lstate.build_chunk)

        return SinkResultType::NEED_MORE_INPUT;
}

[*]Combine接口: 加锁,拷贝local state的hash表到global state
void PhysicalHashJoin::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const {
        auto &gstate = (HashJoinGlobalSinkState &)gstate_p;
        auto &lstate = (HashJoinLocalSinkState &)lstate_p;
        if (lstate.hash_table) {
                lock_guard<mutex> local_ht_lock(gstate.lock);
                gstate.local_hash_tables.push_back(move(lstate.hash_table));
        }
}

[*]MergeTask:启动核数相同的task来进行Hash table的Merge (这里可以看出DuckDB对于多线程的使用是很激进的), 每个任务merge一部分Block(DuckDB之中的行数据,落盘使用)
void Schedule() override {
                auto &context = pipeline->GetClientContext();

                vector<unique_ptr<Task>> finalize_tasks;
                auto &ht = *sink.hash_table;
                const auto &block_collection = ht.GetBlockCollection();
                const auto &blocks = block_collection.blocks;
                const auto num_blocks = blocks.size();
                if (block_collection.count < PARALLEL_CONSTRUCT_THRESHOLD && !context.config.verify_parallelism) {
                        // Single-threaded finalize
                        finalize_tasks.push_back(
                          make_unique<HashJoinFinalizeTask>(shared_from_this(), context, sink, 0, num_blocks, false));
                } else {
                        // Parallel finalize
                        idx_t num_threads = TaskScheduler::GetScheduler(context).NumberOfThreads();
                        auto blocks_per_thread = MaxValue<idx_t>((num_blocks + num_threads - 1) / num_threads, 1);

                        idx_t block_idx = 0;
                        for (idx_t thread_idx = 0; thread_idx < num_threads; thread_idx++) {
                                auto block_idx_start = block_idx;
                                auto block_idx_end = MinValue<idx_t>(block_idx_start + blocks_per_thread, num_blocks);
                                finalize_tasks.push_back(make_unique<HashJoinFinalizeTask>(shared_from_this(), context, sink,
                                                                                           block_idx_start, block_idx_end, true));
                                block_idx = block_idx_end;
                                if (block_idx == num_blocks) {
                                        break;
                                }
                        }
                }
                SetTasks(move(finalize_tasks));
        }

template <bool PARALLEL>
static inline void InsertHashesLoop(atomic<data_ptr_t> pointers[], const hash_t indices[], const idx_t count,
                                    const data_ptr_t key_locations[], const idx_t pointer_offset) {
        for (idx_t i = 0; i < count; i++) {
                auto index = indices;
                if (PARALLEL) {
                        data_ptr_t head;
                        do {
                                head = pointers;
                                Store<data_ptr_t>(head, key_locations + pointer_offset);
                        } while (!std::atomic_compare_exchange_weak(&pointers, &head, key_locations));
                } else {
                        // set prev in current key to the value (NOTE: this will be nullptr if there is none)
                        Store<data_ptr_t>(pointers, key_locations + pointer_offset);

                        // set pointer to current tuple
                        pointers = key_locations;
                }
        }
}

[*]并行扫描hash表,进行outer数据的处理:
void PhysicalHashJoin::GetData(ExecutionContext &context, DataChunk &chunk, GlobalSourceState &gstate_p,
                               LocalSourceState &lstate_p) const {
        auto &sink = (HashJoinGlobalSinkState &)*sink_state;
        auto &gstate = (HashJoinGlobalSourceState &)gstate_p;
        auto &lstate = (HashJoinLocalSourceState &)lstate_p;
        sink.scanned_data = true;

        if (!sink.external) {
                if (IsRightOuterJoin(join_type)) {
                        {
                                lock_guard<mutex> guard(gstate.lock);
                              // 拆解扫描部分hash表的数据
                                lstate.ScanFullOuter(sink, gstate);
                        }
                        // 扫描hash表读取数据
                        sink.hash_table->GatherFullOuter(chunk, lstate.addresses, lstate.full_outer_found_entries);
                }
                return;
        }
}


void HashJoinLocalSourceState::ScanFullOuter(HashJoinGlobalSinkState &sink, HashJoinGlobalSourceState &gstate) {
        auto &fo_ss = gstate.full_outer_scan;
        idx_t scan_index_before = fo_ss.scan_index;
        full_outer_found_entries = sink.hash_table->ScanFullOuter(fo_ss, addresses);
        idx_t scanned = fo_ss.scan_index - scan_index_before;
        full_outer_in_progress = scanned;
}小结


[*]DuckDB在多线程同步,核心就是在Combine的时候:加锁,并发是通过原子变量的方式实现并发写入hash表的操作
[*]通过local/global 拆分私有内存和公共内存,并发的基础是在私有内存上进行运算,同步的部分主要在公有内存的更新
3. Spill To Disk的实现

DuckDB并没有如笔者预期的实现异步IO, 所以任意的执行线程是有可能Stall在系统的I/O调度上的,我想大概率是DuckDB本身的定位对于高并发场景的支持不是那么敏感所导致的。这里他们也作为了后续TODO的计划之一。
https://ask8088-private-1251520898.cos.ap-guangzhou.myqcloud.com/developer-images/article/3016042/0oe19ts0do.png?q-sign-algorithm=sha1&q-ak=AKID2uZ1FGBdx1pNgjE3KK4YliPpzyjLZvug&q-sign-time=1676181627%3B1676188827&q-key-time=1676181627%3B1676188827&q-header-list=&q-url-param-list=&q-signature=23d7e99652449f9205eb8691f4c7cbb41da03fb0
4. 参考资料

DuckDB源码
Push-Based Execution in DuckDB

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页: [1]
查看完整版本: [​DuckDB] 多核算子并行的源码解析