美丽的神话 发表于 2023-4-10 22:54:47

mit 6.824 lab1分析

6.824 lab1 笔记

1. 阅读论文


2. 官网rules & hints

2.1 rules


[*]map阶段每个worker应该把中间文件分成nReduce份,nReduce是reduce任务的数量
[*]worker完成reduce任务后生成文件名mr-out-X
[*]mr-out-X文件每行应该是"%v %v"格式,参考main/mrsequential.go
[*]worker处理完map任务,应该把生成的中间文件放到当前目录中,便于worker执行reduce任务时读取中间文件
[*]当所有任务完成时,Done()函数应该返回true,使得coordinator退出
[*]所有任务完成时,worker应该退出,方法是:
[*]当worker调用rpc向coordinator请求任务时,连接不上coordinator,此时可以认为coordinator已经退出因为所有任务已经完成了
[*]当worker调用rpc向coordinator请求任务时,coordinator可以向其回复所有任务已经完成

2.2 hints


[*]刚开始可以修改mr/worker.go's ``Worker()向coordinator 发送一个RPC请求一个任务。然后修改coordinator回复一个文件名,代表空闲的map任务。然后worker根据文件名读取文件,调用wc.so-Map函数,调用Map函数可参考mrsequential.go`
[*]如果修改了mr/目录下任何文件,应该重新build MapReduce plugins,go build -buildmode=plugin ../mrapps/wc.go
[*]worker处理完map任务后产生的中间文件命名格式mr-X-Y,x是map任务的编号,y是reduce任务编号。
// 初始文件,通过命令行传入的,如
// pg-being_ernest.txt pg-dorian_gray.txt pg-frankenstein.txt
// len(files) = 3 nReduce = 4
// 中间文件x:map任务的编号 y:reduce任务编号
// mr-0-0 mr-1-0 mr-2-0
// mr-0-1 mr-1-1 mr-2-1
// mr-0-2 mr-1-2 mr-2-2
// mr-0-3 mr-1-3 mr-2-3
[*]map任务存储数据到文件可以使用json格式,便于reduce任务读取
// map
enc := json.NewEncoder(file)
for _, kv := ... {
    err := enc.Encode(&kv)
      
// reduce
dec := json.NewDecoder(file)
for {
    var kv KeyValue
    if err := dec.Decode(&kv); err != nil {
      break
    }
    kva = append(kva, kv)
}
[*]map阶段使用ihash(key)函数把key映射到哪个reduce任务,如某个worker取得了2号map任务,ihash("apple") = 1,那么就应该把该key放到mr-2-1文件中
[*]可以参考mrsequential.go代码:读取初始输入文件、排序key、存储reduce输出文件
[*]coordinator是rpc server,将会被并发访问,需要对共享变量加锁
[*]若当前未有空闲的map任务可以分配,worker应该等待一段时间再请求任务,若worker频繁请求任务,coordinator就会频繁加锁、访问数据、释放锁,浪费资源和时间。如使用time.Sleep(),worker可以每隔一秒发送一次请求任务rpc
[*]coordinator无法辨别某个worker是否crash,有可能某个worker还在运行,但是运行极其慢(由于硬件损坏等原因),最好的办法是:coordinator监控某个任务,若该任务未在规定时间内由worker报告完成,那么coordinator可以把该任务重新分配给其他worker,该lab规定超时时间是10s
[*]为了确保某个worker在写入文件时,不会有其他worker同时写入;又或者是某个worker写入文件时中途退出了,只写了部分数据,不能让这个没写完的文件让其他worker看到。可以使用临时文件ioutil.TempFile,当写入全部完成时,再使用原子重命名os.Rename。
[*]Go RPC只能传struct中大写字母开头的变量
[*]调用RPC call() 函数时,reply struct应该为空,不然会报错
reply := SomeType{}
call(..., &reply)
3. 架构设计

https://img2023.cnblogs.com/blog/1828951/202304/1828951-20230410213818386-749762363.png
3.1 RPC设计

在该lab中,我们需要两个RPC,一个是callTask RPC向coordinator请求一个任务,一个是callTaskDone RPC向coordinator报告某个任务的完成,以下皆在rpc.go中定义

[*]首先定义一个枚举变量,表示coordinator给worker分配的任务类型,也可用来表示coordinator当前的phase
type taskType int

const (
    // map任务
        mapType taskType = iota
    // reduce任务
        reduceType
    // 当前没有空闲任务,请等待
    waitting
    // 已经完成全部任务,可以退出了
        done
)
[*]定义拉取任务RPC的args和reply struct
CallTaskArgs中不需要包含变量,只需要让coordinator知道该worker正在请求一个任务,coordinator会随机选择空闲任务进行分配填入CallTaskReply中
CallTaskReply包含以下变量:

[*]FileName:map阶段,worker需要知道具体的文件名才能解析该文件
[*]tp:指示该任务的具体类型
[*]TaskID:worker将该变量放入CallTaskDoneArgs中,coordinator可以迅速定位Task,并且在reduce阶段中,搭配nFiles变量,worker读取mr-0-TaskID、mr-1-TaskID....mr-nFiles-1-TaskID文件
[*]nFiles:初始文件的数量,用于搭配TaskID,在上面已介绍
[*]nReduce:用于map阶段,ihash(key) % nReduce
type CallTaskArgs struct {
}
type CallTaskReply struct {
        FileName string
        TaskID   int
        tp       taskType
        nFiles   int
        nReduceint
}
[*]定义报告任务完成RPC的args和reply struct
TaskID变量作用在CallTaskReply: TaskID 中提及
tp的作用是用于coordinator判断该RPC是否是合法的,举例:worker-1成功请求到map-1任务,但是因为worker-1节点硬件问题处理缓慢而导致coordinator检测到该map-1任务超时,于是把map-1任务分配给了worker-2。等到某个时间点,已经完成所有map任务,coordinator进入到了reduce阶段,但此时worker-1节点才刚运行完map-1任务并报告给coordinator,coordinator检测到当前是reduce阶段,但收到报告完成的rpc是map类型,不会对其进行任何操作。
type CallTaskDoneArgs struct {
        TaskID int
        tp   taskType
}
type CallTaskDoneReply struct {
}
3.2 Coordinator

3.2.1 结构体设计

type taskState int

const (
        spare taskState = iota
        executing
        finish
)

type task struct {
        fileName string
        id       int
        state    taskState
        start    time.Time
}首先设计一个task struct,该结构体代表一个任务

[*]filename:在map阶段,用于coordinator告知worker要读取的初始文件
[*]id: 该任务的id,传给worker,作用在RPC设计中提及
[*]state:任务有三个状态:空闲、执行中、已完成。若空闲则可以分配给worker;若执行中,则监视该任务是否超时
[*]start:任务刚开始执行的时间
type Coordinator struct {
        // Your definitions here.
        mu         sync.Mutex
        state      taskType
        tasks      []*task
        mapChan    chan *task
        reduceChan chan *task
        nReduce    int
        nFiles   int
        finished   int
}接着设计主要Coordinator结构体

[*]state:当前系统的状态,map阶段(分配map任务)、reduce阶段(分配reduce任务)、全部完成done(可以结束系统运行)
[*]tasks: *task的切片,维护了一组任务
[*]mapChan、reduceChan:用于分发map、reduce任务的channel。map阶段,若有空闲map任务,则放至channel中,当有worker请求任务时,则可取出来。reduce阶段同理
[*]finished:当前已完成任务的数量。map阶段,若finished == nFiles,则表示所有map任务完成,可以进入reduce阶段。reduce阶段同理,进入done
3.2.2 初始化

func MakeCoordinator(files []string, nReduce int) *Coordinator {        c := Coordinator{}        // Your code here.        c.mapPhase(files, nReduce)        go c.watch()        c.server()        return &c}func (c *Coordinator) mapPhase(files []string, nReduce int) {        c.state = mapType               //设置系统状态为map阶段        c.nReduce = nReduce              c.nFiles = len(files)        c.tasks = make([]*task, c.nFiles)        c.mapChan = make(chan *task, c.nFiles) // c.nFiles长度的map channel        for i := 0; i < c.nFiles; i++ {                c.tasks = &task{fileName: files, id: i}                c.mapChan0 {                case true:                        task :=0 {                case true:                        task :=0,则取出一个task,调用c.setReply(task, reply),将任务的相关信息填入reply中,并把task的当前状态设为执行中,开始时间设为time.Now()。如果没有可分配的任务,则设reply.Tp = waitting,让worker等待一会再请求任务若当前系统状态为reduce阶段:同上
</ol>3.2.4 任务完成

func (c *Coordinator) CallTaskDone(args *CallTaskDoneArgs, reply *CallTaskDoneReply) error {        c.mu.Lock()        defer c.mu.Unlock()        if c.state != args.Tp || c.state == done {                return nil        }        if c.tasks.state != finish {                c.tasks.state = finish                c.finished++                //fmt.Printf("task %v done\n", args.TaskID)                if c.state == mapType && c.finished == c.nFiles {                        c.reducePhase()                } else if c.state == reduceType && c.finished == c.nReduce {                        close(c.reduceChan)                        c.state = done                }        }        return nil}func (c *Coordinator) reducePhase() {        //fmt.Printf("reduce phase\n")        close(c.mapChan)        c.state = reduceType        c.tasks = make([]*task, c.nReduce)        c.finished = 0        c.reduceChan = make(chan *task, c.nReduce)        for i := 0; i < c.nReduce; i++ {                c.tasks = &task{id: i}                c.reduceChantimeout {                                task.state = spare                                switch c.state {                                case mapType:                                        c.mapChan
页: [1]
查看完整版本: mit 6.824 lab1分析