如何理解超平面?
参考:https://zhuanlan.zhihu.com/p/145706435首先明确几个定义:(1) 超平面是指n维线性空间中维度为n-1的子空间。它可以把线性空间分割成不相交的两部分。比如二维空间中,一条直线是一维的,它把平面分成了两块;三维空间中,一个平面是二维的,它把空间分成了两块。(2) 法向量是指垂直于超平面的向量。
在 https://www.zhihu.com/equation?tex=%5Cmathbb%7BR%7D%5E3 空间中,假如有法向量 https://www.zhihu.com/equation?tex=%5Comega ,过原点的平面内任意原点出发的向量 https://www.zhihu.com/equation?tex=x 必然与之满足 https://www.zhihu.com/equation?tex=w%5ETx%3D0 。如果平面沿着法向量的方向上下平移了,那么这个方程就不成立了。
https://img2022.cnblogs.com/blog/1322799/202206/1322799-20220625214027611-813790048.png
https://img2022.cnblogs.com/blog/1322799/202206/1322799-20220625214040354-745752497.png
我们假设平移之后平面经过 https://www.zhihu.com/equation?tex=x%27%28x_1%27%2Cx_2%27%2Cx_3%27%29 ,平面内任意一点记为 https://www.zhihu.com/equation?tex=x%28x_1%2Cx_2%2Cx_3%29 ,法向量记为 https://www.zhihu.com/equation?tex=%5Comega%28%5Comega_1%2C%5Comega_2%2C%5Comega_3%29 ,如下图。
https://img2022.cnblogs.com/blog/1322799/202206/1322799-20220625214921787-8918911.png
不难看出, https://www.zhihu.com/equation?tex=x-x%27 在平面内,当然也就和法向量垂直。于是我们有:
https://www.zhihu.com/equation?tex=%28x-x%27%29w%3D0+
https://www.zhihu.com/equation?tex=%28x_1-x_1%27%2C+x_2-x_2%27%2Cx_3-x_3%27%29%5Ccdot%28%5Comega_1%2C%5Comega_2%2C%5Comega_3%29%3D0
化简后得:
https://www.zhihu.com/equation?tex=x_1%5Comega_1%2Bx_2%5Comega_2%2Bx_3%5Comega_3%3D%5Comega_1x_1%27%2B%5Comega_2x_2%27%2B%5Comega_3x_3%27
即 https://www.zhihu.com/equation?tex=%5Comega%5ETx%3D%5Comega%5ETx%27 。由于其为常数项,令 https://www.zhihu.com/equation?tex=b%3D-%5Comega%5ETx%27 ,于是超平面的公式可以写成:
https://www.zhihu.com/equation?tex=%5Comega%5ETx%2Bb%3D0
1. 这个结论同样适用于 https://www.zhihu.com/equation?tex=R%5En 空间; 2. 无论超平面如何平移,系数始终是法向量 https://www.zhihu.com/equation?tex=%5Comega 。
点到超平面的距离
https://img2022.cnblogs.com/blog/1322799/202206/1322799-20220625215150654-503928513.png
上图中 https://www.zhihu.com/equation?tex=x 是平面外的一点。我们要求的距离记为 https://www.zhihu.com/equation?tex=d ,也就是红色的线段。根据三角函数可以得到: https://www.zhihu.com/equation?tex=%5Ccos%7B%5Ctheta%7D%3D%5Cdfrac%7Bd%7D%7B%7C%7Cx-x%27%7C%7C%7D (空间中一点向超平面作垂线, https://www.zhihu.com/equation?tex=%5Ctheta 只能是锐角,不必担心正负)。因为 https://www.zhihu.com/equation?tex=d 肯定和法向量平行,所以这样来算夹角: https://www.zhihu.com/equation?tex=%7C%28x-x%27%29%5Comega%7C%3D%7C%7Cx-x%27%7C%7C%5Ccdot%7C%7C%5Comega%7C%7C%5Ccdot%5Ccos%7B%5Ctheta%7D (因为法向量可能反向,所以给等式左边加上绝对值),联立得:
https://www.zhihu.com/equation?tex=d+%3D+%5Cdfrac%7B%7C%28x-x%27%29%5Comega%7C%7D%7B%7C%7C%5Comega%7C%7C%7D%3D%5Cdfrac%7B%7C%5Comega+x-%5Comega+x%27%7C%7D%7B%7C%7C%5Comega%7C%7C%7D+
因为 https://www.zhihu.com/equation?tex=x%27 在超平面内, https://www.zhihu.com/equation?tex=%5Comega+x%27%3D-b ,于是最后得到的任意点到超平面的距离公式:
https://www.zhihu.com/equation?tex=d%3D%5Cdfrac%7B%7C%5Comega+x%2Bb%7C%7D%7B%7C%7C%5Comega%7C%7C%7D
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页:
[1]