一个 println 竟然比 volatile 还好使?
前两天一个小伙伴突然找我求助,说准备换个坑,最近在系统复习多线程知识,但遇到了一个刷新认知的问题……小伙伴:Effective JAVA 里的并发章节里,有一段关于可见性的描述。下面这段代码会出现死循环,这个我能理解,JMM 内存模型嘛,JMM 不保证 stopRequested 的修改能被及时的观测到。
static boolean stopRequested = false;
public static void main(String[] args) throws InterruptedException {
Thread backgroundThread = new Thread(() -> {
int i = 0;
while (!stopRequested) {
i++;
}
}) ;
backgroundThread.start();
TimeUnit.MICROSECONDS.sleep(10);
stopRequested = true ;
}但奇怪的是在我加了一行打印之后,就不会出现死循环了!难道我一行 println 能比 volatile 还好使啊?这俩也没关系啊
static boolean stopRequested = false;
public static void main(String[] args) throws InterruptedException {
Thread backgroundThread = new Thread(() -> {
int i = 0;
while (!stopRequested) {
// 加上一行打印,循环就能退出了!
System.out.println(i++);
}
}) ;
backgroundThread.start();
TimeUnit.MICROSECONDS.sleep(10);
stopRequested = true ;
}我:小伙子八股文背的挺熟啊,JMM 张口就来。
我:这个……其实是 JIT 干的好事,导致你的循环无法退出。JMM 只是一个逻辑上的内存模型规范,JIT可以根据JMM的规范来进行优化。
比如你第一个例子里,你用-Xint禁用 JIT,就可以退出死循环了,不信你试试?
小伙伴:WK,真的可以,加上 -Xint 循环就退出了,好神奇!JIT 是个啥啊?还能有这种功效?
https://s3.cn-north-1.jdcloud-oss.com/shendengbucket1/2023-09-18-17-01g8FfRyAvsqkuVO41.png
JIT(Just-in-Time) 的优化
众所周知,JAVA 为了实现跨平台,增加了一层 JVM,不同平台的 JVM 负责解释执行字节码文件。虽然有一层解释会影响效率,但好处是跨平台,字节码文件是平台无关的。
https://s3.cn-north-1.jdcloud-oss.com/shendengbucket1/2023-09-18-17-02YBXf9eNhQVp9WmZ.png
在 JAVA 1.2 之后,增加了即时编译(Just-in-Time Compilation,简称 JIT)的机制,在运行时可以将执行次数较多的热点代码编译为机器码,这样就不需要 JVM 再解释一遍了,可以直接执行,增加运行效率。
https://s3.cn-north-1.jdcloud-oss.com/shendengbucket1/2023-09-18-17-02zFqtTfiBc2efEXb.png
但 JIT 编译器在编译字节码时,可不仅仅是简单的直接将字节码翻译成机器码,它在编译的同时还会做很多优化,比如循环展开、方法内联等等……
这个问题出现的原因,就是因为 JIT 编译器的优化技术之一 -表达式提升(expression hoisting)导致的。
表达式提升(expression hoisting)
先来看个例子,在这个hoisting方法中,for 循环里每次都会定义一个变量y,然后通过将 x*y 的结果存储在一个 result 变量中,然后使用这个变量进行各种操作
public void hoisting(int x) {
for (int i = 0; i < 1000; i = i + 1) {
// 循环不变的计算
int y = 654;
int result = x * y;
// ...... 基于这个 result 变量的各种操作
}
}但是这个例子里,result 的结果是固定的,并不会跟着循环而更新。所以完全可以将 result 的计算提取到循环之外,这样就不用每次计算了。JIT 分析后会对这段代码进行优化,进行表达式提升的操作:
public void hoisting(int x) {
int y = 654;
int result = x * y;
for (int i = 0; i < 1000; i = i + 1) {
// ...... 基于这个 result 变量的各种操作
}
}这样一来,result 不用每次计算了,而且也完全不影响执行结果,大大提升了执行效率。
注意,编译器更喜欢局部变量,而不是静态变量或者成员变量;因为静态变量是“逃逸在外的”,多个线程都可以访问到,而局部变量是线程私有的,不会被其他线程访问和修改。
编译器在处理静态变量/成员变量时,会比较保守,不会轻易优化。
像你问题里的这个例子中,stopRequested就是个静态变量,编译器本不应该对其进行优化处理;
static boolean stopRequested = false;// 静态变量
public static void main(String[] args) throws InterruptedException {
Thread backgroundThread = new Thread(() -> {
int i = 0;
while (!stopRequested) {
// leaf method
i++;
}
}) ;
backgroundThread.start();
TimeUnit.MICROSECONDS.sleep(10);
stopRequested = true ;
}但由于你这个循环是个leaf method,即没有调用任何方法,所以在循环之中不会有其他线程会观测到stopRequested值的变化。那么编译器就冒进的进行了表达式提升的操作,将stopRequested提升到表达式之外,作为循环不变量(loop invariant)处理:
int i = 0;
boolean hoistedStopRequested = stopRequested;// 将stopRequested 提升为局部变量
while (!hoistedStopRequested) {
i++;
}这样一来,最后将stopRequested赋值为 true 的操作,影响不了提升的hoistedStopRequested的值,自然就无法影响循环的执行了,最终导致无法退出。
至于你增加了println之后,循环就可以退出的问题。是因为你这行 println 代码影响了编译器的优化。println 方法由于最终会调用 FileOutputStream.writeBytes 这个 native 方法,所以无法被内联优化(inling)。而未被内敛的方法调用从编译器的角度看是一个“full memory kill”,也就是说副作用不明、必须对内存的读写操作做保守处理。
在这个例子里,下一轮循环的stopRequested读取操作按顺序要发生在上一轮循环的 println 之后。这里“保守处理”为:就算上一轮我已经读取了stopRequested的值,由于经过了一个副作用不明的地方,再到下一次访问就必须重新读取了。
所以在你增加了 prinltln 之后,JIT 由于要保守处理,重新读取,自然就不能做上面的表达式提升优化了。
以上对表达式提升的解释,总结摘抄自R大的知乎回答。R大,行走的 JVM Wiki!
我:“这下明白了吧,这都是 JIT 干的好事,你要是禁用 JIT 就没这问题了”
<blockquote>
小伙伴:“WK
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页:
[1]