小小小幸运 发表于 2024-6-9 05:51:46

2.4 OpenCV随手简记(五)

一、图像翻转       第一个图像翻转,这个可是制作表情包的利器。      图像翻转在    OpenCV    中调用函数    flip()    实现,原函数如下:       flip(src, flipCode, dst=None)   

[*]src:原始图像。
[*]flipCode:翻转方向,
[*]如果 flipCode 为 0 ,则以 X 轴为对称轴翻转,
[*]如果 fliipCode > 0 则以 Y 轴为对称轴翻转,
      

[*]如果 flipCode < 0 则在 X 轴、 Y 轴方向同时翻转。
         示例如下:            import cv2 as cv
import matplotlib.pyplot as plt
# 读取图片 由 GBR 转 RGB
img = cv.imread('maliao.jpg')
src = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# 图像翻转
# flipCode 为 0 ,则以 X 轴为对称轴翻转,如果 fliipCode > 0 则以 Y 轴为对称轴翻转,如果
flipCode < 0 则在 X 轴、 Y 轴方向同时翻转。
img1 = cv.flip(src, 0)
img2 = cv.flip(src, 1)
img3 = cv.flip(src, -1)
# plt 显示图形
titles = ['Source', 'Ima1', 'Ima2', 'Ima3']
images =
for i in range(4):
plt.subplot(2, 2, i + 1)
plt.imshow(images)
plt.title(titles)
plt.xticks([])
plt.yticks([])
plt.show()   https://img-blog.csdnimg.cn/direct/a844a273333343e4835ca040c274a98b.png
         二、放射变换                           1.图像平移                                 图像平移是通过仿射函数         warpAffine()         来实现的,原函数如下:                     warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None,
borderValue=None)               在图像平移中我们会用到前三个参数:                        1.          需要变换的原始图像                        2.          移动矩阵         M                        3.          变换的图像大小(如果这个大小不和原始图像大小相同,那么函数会自动通过插值来调整像素间的关系)。                        图像的平移是沿着          x          方向移动          tx          距离,          y          方向移动          ty          距离,那么需要构造移动矩阵         :                         M = [ , ]                   M           为          2x3          矩阵,          M           矩阵必须是          float          类型的。                             创建          M          矩阵有如下两种方法:                             (1)          、          M = np.zeros(2,3,np.float32)                           M =                            M =                            (2)          、         M = np.float32(, )                           我们通过         Numpy         来产生          M          矩阵(必须是          float          类型的),并将其赋值给仿射函数         warpAffine()         ,下                           面来看个示例:                            import cv2 as cv
import numpy as np
#读取图片
src = cv.imread('maliao.jpg')
rows, cols = src.shape[:2]
# 定义移动距离
tx = 50
ty = 100
# 生成 M 矩阵
M = np.float32([, ])
# 平移
dst = cv.warpAffine(src, M, (cols, rows))
# 显示图像
cv.imshow('src', src)
cv.imshow("dst", dst)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()          https://img-blog.csdnimg.cn/direct/572aff98750848ed878941e6f97637a1.png
                                              留意:       warpAffine       函数的第三个参数是输出图像的大小, 这里设置的大小是原图片的大小,所               以效果会有部门遮挡。                            2.平移的动态演示                    import cv2 as cv
import numpy as np
import time
#读取图片
src = cv.imread('beauty5.jpeg')
rows, cols = src.shape[:2]
# 定义移动距离
tx = 50
ty = 100
i = 0
while cv.waitKey(1) == -1: #等待1毫秒后,用户按下任意键
# 生成 M 矩阵
M = np.float32([, ])
# 平移
dst = cv.warpAffine(src, M, (cols, rows))
# 显示图像
cv.imshow("dst", dst)
time.sleep(1/190)
i = i+1
cv.destroyWindow("dst")

# 斜下方移动,移出后又返回
import cv2 as cv
import numpy as np
import time
#读取图片
src = cv.imread('beauty5.jpeg')
rows, cols = src.shape[:2]
# 定义移动距离
tx = 0
ty = 0
i = 0
while cv.waitKey(1) == -1: #等待1毫秒后,用户按下任意键
# 生成 M 矩阵
if tx+i>src.shape: # 移出后又返回
i = 0
Tx = tx+i
Ty = ty+i
M = np.float32([, ])
# 平移
dst = cv.warpAffine(src, M, (cols, rows))
# 显示图像
cv.imshow("dst", dst)
time.sleep(1/190)
i = i+1
cv.destroyWindow("dst")       3.图像旋转
               图像旋转主要调用         getRotationMatrix2D()         函数和         warpAffine()         函数实现,绕图像的某一个中心                     点旋转,详细如下:                              M = cv2.getRotationMatrix2D((cols/2, rows/2), 30, 1)                              参数分别为:旋转中心、旋转度数、      scale                              rotated = cv2.warpAffine(src, M, (cols, rows))                              参数分别为:原始图像、旋转参数、原始图像宽高                              图像旋转:设(         x0 , y0         )是旋转后的坐标,(         x , y         )是旋转前的坐标,      ( m , n )      是旋转中心,         a         是旋转 的角度(      顺时针      )      ,      ( left , top )      是旋转后图像的左上角坐标,则公式如下      :                        import cv2 as cv
#读取图片

src = cv.imread('maliao.jpg')
# 原图的高、宽
rows, cols = src.shape[:2]
# 绕图像的中心旋转
# 参数:旋转中心 旋转度数 scale
M = cv.getRotationMatrix2D((cols/2, rows/2), 90, 1)
#
dst = cv.warpAffine(src, M, (cols, rows))
# 显示图像
cv.imshow("src", src)
cv.imshow("dst", dst)
# 等待显示
cv.waitKey()
cv.destroyAllWindows()   https://img-blog.csdnimg.cn/direct/1495bab38a2a49ecabeef55c24657ca4.png
         4.图片动态旋转效果                      # 固定大小旋转
import cv2 as cv
import time
#读取图片
src = cv.imread('beauty5.jpeg')
# 原图的高、宽
5.4 图像倾斜
rows, cols = src.shape[:2]
i = 1
while cv.waitKey(1) == -1: #等待1毫秒后,用户按下任意键
# 生成 M 矩阵
M = cv.getRotationMatrix2D((cols/2, rows/2), 0+i*30, 0.5) # 0-i*30 反转
# 绕图像的中心旋转
# 参数:旋转中心 旋转度数 scale
dst = cv.warpAffine(src, M, (cols, rows))
i = i+1
# 显示图像
cv.imshow("dst", dst)
time.sleep(1/10) # 时间越短,现象越有趣
cv.destroyWindow("dst")      # 由小到大旋转
import cv2 as cv
import time
#读取图片
src = cv.imread('beauty5.jpeg')
# 原图的高、宽
rows, cols = src.shape[:2]
i = 1
while cv.waitKey(1) == -1: #等待1毫秒后,用户按下任意键
# 生成 M 矩阵
M = cv.getRotationMatrix2D((cols/2, rows/2), 0+i*20, 0.01*i)
# 绕图像的中心旋转
# 参数:旋转中心 旋转度数 scale
dst = cv.warpAffine(src, M, (cols, rows))
i = i+1
if i == 100:
i = 1
time.sleep(3)
# 显示图像
cv.imshow("dst", dst)
time.sleep(1/30)
cv.destroyWindow("dst")             5.图像倾斜                          import cv2
import numpy as np
img = cv2.imread("demo.png") # 读取图像
rows = len(img) # 图像像素行数
cols = len(img) # 图像像素列数
p1 = np.zeros((3, 2), np.float32) # 32位浮点型空列表,原图三个点
p1 = # 左上角点坐标
p1 = # 右上角点坐标
p1 = # 左下角点坐标
p2 = np.zeros((3, 2), np.float32) # 32位浮点型空列表,倾斜图三个点
p2 = # 左上角点坐标,向右挪50像素
p2 = # 右上角点坐标,位置不变
p2 = # 左下角点坐标,位置不变
M = cv2.getAffineTransform(p1, p2) # 根据三个点的变化轨迹计算出M矩阵
dst = cv2.warpAffine(img, M, (cols, rows)) # 按照M进行仿射
cv2.imshow('img', img) # 显示原图
cv2.imshow('dst', dst) # 显示仿射变换效果
cv2.waitKey() # 按下任何键盘按键后
cv2.destroyAllWindows() # 释放所有窗体       6.透视变换
      
               摄像机斜视拍摄一物体后,形成的图像会发生变形,如果将图像映射到拍摄物体平面上,相称于将相机垂直于拍摄平面,这样就会得到图像的真实外形,由于这种映射相称于将原图重新      透视      到另一个平面,这种称之为“      重投影      ”      。                      https://img-blog.csdnimg.cn/direct/2b29d171457f420a8f19f1184f03fdbf.png                             上述仿射变换可以将矩形映射成恣意平行四边形,      各边仍保持平行      ;而透视变换可以将矩形映射为       恣意四边形      ,      直线仍保持直线      。       由于不再是平行四边形,需提供四个极点。               透视变换通过函数      cv2.warpPerspective()      实现,语法为      :                warpPerspective(src, M, dsize, dst=None, flags=None, borderMode=None,
borderValue=None)
'''
dst:透视后的输出图像,dsize决定输出图像大小
src:输入图像
M:3*3变换矩阵
flags:插值方法,默认为INTER_LINEAR
borderMode:边类型,默认为BORDER_CONSTANT
borderValue:边界值,默认为0
'''             透视变换通过函数       cv2.getPerspectiveTransform()       来天生转换矩阵,需输入输入图像和输出图像的                  四个极点的坐标。                         cv2.getPerspectiveTransform(p1,p2)
# p1,p2分别为原图像4点坐标和新图像4点坐标               手动获取图像极点的直接透视变换                       1      、获取图像四个极点(通过      photoshop      等软件手动获取,或用      python-opencv      程序手动获取)                     2      、形成变换矩阵                     3      、透视变换                           import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('C:/Users/df/Desktop/pp.png')
H_rows, W_cols= img.shape[:2]
print(H_rows, W_cols)
# 原图中书本的四个角点(左上、右上、左下、右下),获取方法见《鼠标点击图片显示点击点及坐标》
pts1 = np.float32([, , , ])
#变换后矩阵位置
pts2 = np.float32([,,,,])
# 生成透视变换矩阵;进行透视变换
M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, M, (668, 634))
cv2.imshow("original_img",img)
cv2.imshow("result",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()      import cv2
import numpy as np
img = cv2.imread("pp.png")
print("the shape of the imag is: ",img.shape)
def on_EVENT_LBUTTONDOWN(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
xy = "%d,%d" % (x, y)
print (xy)
cv2.circle(img, (x, y), 1, (255, 0, 0), thickness = -1)
cv2.putText(img, xy, (x, y), cv2.FONT_HERSHEY_PLAIN,
1.0, (0,0,0), thickness = 1)
cv2.imshow("image", img)
cv2.namedWindow("image")
cv2.setMouseCallback("image", on_EVENT_LBUTTONDOWN)
cv2.imshow("image", img)
while(True):
try:
cv2.waitKey(100)
if cv2.getWindowProperty('img',cv2.WND_PROP_VISIBLE) <= 0:
break # 防止直接关闭窗口后的“阻塞”
except Exception:
cv2.destroyWindow("image")
break
cv2.waitKey(0)
#cv2.destroyAllWindow()                 通过创建一个鼠标回调函数,当鼠标变乱发生时执行该函数。鼠标变乱可以是任何与鼠标相关的事         件,如左键向下、左键向上、左键双击等。          它为我们提供了每个鼠标变乱的坐标(         x         ,         y         )。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页: [1]
查看完整版本: 2.4 OpenCV随手简记(五)