八卦阵 发表于 2024-7-28 21:31:21

Redis的缓存穿透、缓存击穿和缓存雪崩

目次
一、解释阐明
二、缓存穿透
 1. 什么是缓存穿透?
 2. 常见的两种解决方案
 (1)缓存空对象
 (2)布隆过滤
3. 编码解决商品查询的缓存穿透题目
三、缓存击穿
 1.  什么是缓存击穿?
 2、缓存击穿解决方案(2种)
(1)互斥锁
(2)逻辑逾期
 3.  互斥锁与逻辑逾期的对比分析​编辑
 四、利用互斥锁解决缓存击穿题目
(1)首先,我们声明一下获取锁、释放锁的方法,tryLock()、unLock()
(2)互斥锁解决缓存击穿 queryWithMutex() 
五、利用逻辑逾期解决缓存击穿题目
(1)添加逻辑逾期时间的字段
(2)逻辑逾期解决缓存击穿题目 queryWithLogicalExpire()
 六、缓存雪崩
1.  什么是缓存雪崩?
2.  缓存雪崩解决方案(4种)
七、封装 Redis 工具类

一、解释阐明

   Redis缓存穿透、缓存击穿和缓存雪崩都是缓存机制中的一些题目,具体解释如下:
(1)缓存穿透(Cache Penetration):指查询一个不存在的数据,由于缓存中没有数据,
             所以这个查询请求会直接穿过缓存层,到达数据库层,造成了数据库的压力。
             攻击者可以通过构造恶意请求,使得缓存层无法命中任何数据,
             从而导致请求直接访问数据库,从而引起数据库压力过大。

(2)缓存击穿(Cache Breakdown):指缓存中某个热点数据失效,此时有大量并发请求同时访问
             这个失效的数据,导致这些请求直接访问数据库,造成数据库压力过大,
             甚至导致数据库崩溃。通常是由于缓存中某个热点数据过期失效,
             同时有大量并发请求访问该数据。

(3)缓存雪崩(Cache Avalanche):指缓存中大量的数据失效,导致大量请求直接访问数据库,
             造成数据库压力过大。通常是由于缓存中大量的数据在同一时间失效,
             导致大量请求直接访问数据库。   针对上述题目,可以采取以下步伐:
(1)缓存穿透:可以在查询缓存之前,先对请求的参数进行合法性检查,如过滤非法字符、
            判断参数范围等;或者使用BloomFilter等数据结构,对查询参数进行过滤,
            只有在BloomFilter中判断有可能存在的情况下才会去查询数据库。

(2)缓存击穿:可以使用锁机制或者分布式锁机制,避免大量并发请求同时访问失效的热点数据。
            或者不设置TTL,设置逻辑上过期标识,需要过期的时候直接删除标识
            

(3)缓存雪崩:可以采用多级缓存架构,减少缓存层的压力;
            或者设置热点数据的过期时间为随机时间,避免在同一时间大量数据同时失效。
            另外可以在缓存层和数据库层之间添加限流、熔断等措施,
            避免因突发流量导致系统崩溃。 二、缓存穿透

1. 什么是缓存穿透?

    缓存穿透是指客户端哀求的数据在缓存中和数据库中都不存在,如许缓存永久不会生效,这些哀求都会打到数据库。
2. 常见的两种解决方案

(1)缓存空对象

简单的来说,就是请求之后,发现数据不存在,就将null值打入Redis中。

优点:实现简单,维护方便
缺点:额外的内存消耗
      可能造成短期的不一致 思路分析:
      当我们客户端访问不存在的数据时,先请求 redis,但是此时 redis 中没有数据,
此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,
我们都知道数据库能够承载的并发不如 redis 这么高,如果大量的请求同时过来访问这种不存在的数据,
这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,
我们也把这个数据存入到 redis 中去,这样,下次用户过来访问这个不存在的数据,
那么在 redis 中也能找到这个数据就不会进入到数据库了。
https://i-blog.csdnimg.cn/blog_migrate/86517f1465712f9e04532ad2c25b5518.png
 (2)布隆过滤

   在客户端与Redis之间加了一个布隆过滤器,对请求进行过滤。

   布隆过滤器的大致的原理:布隆过滤器中存放二进制位。
               数据库的数据通过hash算法计算其hash值并存放到布隆过滤器中,
               之后判断数据是否存在的时候,就是判断该hash值是0还是1。

               但是这是一种概率上的统计,当其判断不存在的时候就一定是不存在;
                当其判断存在的时候就不一定存在。所以有一定的穿透风险 优点:内存占用较少,没有多余 key
缺点:实现复杂 存在误判可能
https://i-blog.csdnimg.cn/blog_migrate/bfc0ae31c45ec6fb4c54ccf4146a95cc.png
综上所述

               我们可以两种方案一起用,如许子最为保险。据统计使用布隆过滤器一般可以避免90%的无效哀求。
 3. 编码解决商品查询的缓存穿透题目

核心思路如下:

            在原来的逻辑中,我们如果发现这个数据在 mysql 中不存在,直接就返回 404 了,
这样是会存在缓存穿透问题的

现在的逻辑中:
            如果这个数据不存在,我们不会返回 404 ,还是会把这个数据写入到 Redis 中,
并且将 value 设置为空,当再次发起查询时,我们如果发现命中之后,判断这个 value 是否是 null,
如果是 null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。 https://i-blog.csdnimg.cn/blog_migrate/59d2d35ceafbf6ac5f645caa7e5ef92b.png
我们在这里只要做两件事:
当查询数据在数据库中不存在时,将空值写入 redis
 判断缓存是否命中后,再加一个判断是否为空值 @Override
public Result queryById(Long id) {

    // 从redis查询商铺缓存
    String key = CACHE_SHOP_KEY + id;
    String shopJson = stringRedisTemplate.opsForValue().get(key);

    // 判断是否存在
    if (StrUtil.isNotBlank(shopJson)) {
      // 存在,直接返回
      Shop shop = JSONUtil.toBean(shopJson, Shop.class);
      return Result.ok(shop);
    }

    // 1.判断空值
    if (shopJson.isBlank(shopJson)) {
      // 返回一个错误信息
      return Result.fail("店铺不存在!");
    }


    // 不存在,根据id查询数据库
    Shop shop = getById(id);

    // 不存在,返回错误
    if (shop == null) {
      
      // 2.防止穿透问题,将空值写入redis!!!
      stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
      return Result.fail("店铺不存在!");
    }

    // 存在,写入Redis
    // 把shop转换成为JSON形式写入Redis
    // 同时添加超时时间
    stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
    return Result.ok(shop);
} 总结:
缓存穿透产生的缘故原由是什么?
用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力 缓存穿透的解决方案有哪些?
(1)缓存 null 值
(2)布隆过滤
(3)增强 id 的复杂度,避免被猜测 id 规律
(4)做好数据的基础格式校验
(5)加强用户权限校验
(6)做好热点参数的限流 三、缓存击穿

 1.  什么是缓存击穿?

缓存击穿是部分key逾期导致的严重结果。
为什么大量key过期会产生问题而少量的key也会有问题?

    缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,
无数的请求访问会在瞬间给数据库带来巨大的冲击。 具体情况如下图所示:https://i-blog.csdnimg.cn/blog_migrate/1f2f7f716daeb5710237734fe220af4f.png
 上述:假设此时该热点key的TTL时间到(失效了),则查询缓存未掷中,会继续查询数据库,并进行缓存重修工作。但是由于查询SQL逻辑比较复杂、重修缓存的时间较久,而且该key又是热点key,短时间内有大量的线程对其进行访问,所以哀求会直接 “打到” 数据库中,数据库就有可能崩掉!
2、缓存击穿解决方案(2种)

(1)互斥锁

简单的来说:
          并不是所有的线程都有 “ 资格 ” 去访问数据库,只有持有锁的线程才可以对其进行操作。
不过该操作有一个很明显的问题,就是会出现相互等待的情况。 https://i-blog.csdnimg.cn/blog_migrate/15249e6f03df8dacde049298ac005183.png

  (2)逻辑逾期

不设置TTL
         之前所说导致缓存击穿的原因就是该key的TTL到期了,所以我们在这就不设置TTL了,
而是使用一个字段,例如:expire表示过期时间(逻辑上的)。当我们想让它 “ 过期 ” 的时候,
我们可以直接手动将其删除(热点key,即只是在一段时间内,其被访问的频次很高)。

这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。 https://i-blog.csdnimg.cn/blog_migrate/cce2b4a3993cc9fb866fbc33b602ac0d.png

 3.  互斥锁与逻辑逾期的对比分析https://i-blog.csdnimg.cn/blog_migrate/461be07e82cb7c226623f61dde256cb4.png

 四、利用互斥锁解决缓存击穿题目

 核心思路:
         相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,
如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有得到,
则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询

         如果获取到了锁的线程,再去进行查询,查询后将数据写入 redis,再释放锁,返回数据,
利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿。 https://i-blog.csdnimg.cn/blog_migrate/dcde58533b9829fcbdc014b866bb0954.png

代码实现

(1)首先,我们声明一下获取锁、释放锁的方法,tryLock()、unLock()

/**
* 获取锁
* @param key
* @return
*/
private boolean tryLock(String key) {
    // setnx 就是 setIfAbsent 如果存在
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.MINUTES);
    // 装箱是将值类型装换成引用类型的过程;拆箱就是将引用类型转换成值类型的过程
    // 不要直接返回flag,可能为null
    return BooleanUtil.isTrue(flag);
}

/**
* 释放锁
* @param key
*/
private void unLock(String key) {
    stringRedisTemplate.delete(key);
} 留意:这里的锁不是真正的线程锁,而是redis里面的一个特殊的key。
(2)互斥锁解决缓存击穿 queryWithMutex() 

/**
* 互斥锁解决缓存击穿 queryWithMutex()
* @param id
* @return
*/
public Shop queryWithMutex(Long id) {
    // 1.从redis查询商铺缓存
    String key = CACHE_SHOP_KEY + id;
    String shopJson = stringRedisTemplate.opsForValue().get(key);

    // 2.判断是否存在
    if (StrUtil.isNotBlank(shopJson)) {
      return JSONUtil.toBean(shopJson, Shop.class);
    }

    // 判断空值
    if (shopJson != null) {
      // 返回一个错误信息
      return null;
    }

    String lockKey = "lock:shop:" + id;
    Shop shop = null;
    try {
      // 4.实现缓存重建
      // 4.1获取互斥锁
      boolean isLock = tryLock(lockKey);

      // 4.2判断是否成功
      if (!isLock) {
            // 4.3失败,则休眠并重试
            Thread.sleep(50);
            // 递归
            return queryWithMutex(id);
      }
      // 4.4成功,根据id查询数据库
      shop = getById(id);

      // 模拟延迟
      Thread.sleep(200);

      // 5.不存在,返回错误
      if (shop == null) {
            stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
            return null;
      }

      // 6.存在,写入redis
      stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL,TimeUnit.MINUTES);

    } catch (InterruptedException ex) {
      throw new RuntimeException(ex);
    } finally {
      // 7.释放锁
      unLock(lockKey);
    }

    // 8.返回
    return shop;
} 五、利用逻辑逾期解决缓存击穿题目

需求:修改根据id查询商铺的业务,基于逻辑逾期方式来解决缓存击穿题目https://i-blog.csdnimg.cn/blog_migrate/6751d1dc3898514143cb48aad869da86.png

留意:这里的key是否逾期,不是由redis控制的,而是由我们本身去手动编写逻辑去控制的。 
代码实现

(1)添加逻辑逾期时间的字段

之前的Shop中是没有逻辑逾期的字段,要如何让它带有这个属性,又不修改之前的代码呢?
新建一个RedisData对象,里面的data指的是Shop对象,而expireTime是逻辑逾期时间。
即:我们可以使用 JSONUtil.toBean 将Shop对象通过序列化、反序列化到RedisData类的data属性中。
@Data
public class RedisData {
    // LocalDateTime : 同时含有年月日时分秒的日期对象
    // 并且LocalDateTime是线程安全的!
    private LocalDateTime expireTime;
    private Object data;
} (2)逻辑逾期解决缓存击穿题目 queryWithLogicalExpire()

缓存重修
/**
* 重建缓存,先缓存预热一下,否则queryWithLogicalExpire() 的expire为null
* @param id
* @param expireSeconds
*/
public void saveShopRedis(Long id, Long expireSeconds) {
    // 1.查询店铺数据
    Shop shop = getById(id);
    // 2.封装逻辑过期时间
    RedisData redisData = new RedisData();
    redisData.setData(shop);
    redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));// 过期时间
    // 3.写入redis
    stringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));
} 先使用测试方法运行一下saveShopRedis(),否则redis里面没有expireTime !https://i-blog.csdnimg.cn/blog_migrate/06bb7150525a38dd09f87506df9324d9.png

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

/**
* 逻辑过期解决缓存击穿问题 queryWithLogicalExpire()
* 测试前要先缓存预热一下!不然 data 与 expireTime 的缓存值是null!
* @param id
* @return
*/
public Shop queryWithLogicalExpire(Long id) {
    // 1.从redis查询商铺缓存
    String key = CACHE_SHOP_KEY + id;
    String shopJson = stringRedisTemplate.opsForValue().get(key);

    // 2.判断是否存在
    if (StrUtil.isBlank(shopJson)) {
      return null;
    }

    // 4.命中,需要将json反序列化为对象
    // redisData没有数据
    RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();

    // 5.判断是否过期
    if (expireTime.isAfter(LocalDateTime.now())) {
      // 5.1未过期,直接返回店铺信息
      return shop;
    }

    // 5.2已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean islock = tryLock(lockKey);
    // 6.2.判断是否获取互斥锁成功
    if (islock) {
      // 6.3.成功,开启独立线程,实现缓存重建
      CACHE_REBUILD_EXECUTOR.submit( () -> {
            try {
                // 重建缓存,过期时间为20L
                saveShopRedis(id,20L);
            } catch (Exception ex) {
                throw new RuntimeException(ex);
            } finally {
                unLock(lockKey);
            }
      });
    }
    // 6.4.返回过期店铺信息
    return shop;
} 可以看到在测试的时间,name的值为:“100XXXX”
修改一下数据库,将值改为:“900XXXX”,看看并发情况下缓存重修能否正确!https://i-blog.csdnimg.cn/blog_migrate/1beb8852887cedc5604a59fcd8c0ad75.png
 通过Jmeter做压力测试https://i-blog.csdnimg.cn/blog_migrate/925a2e74d56c93c87a44a263d1df7558.png
 再查看Redis中的数据,可以看到name的值已经被修改了,而且上面的jmeter的每一个http都是正常的!https://i-blog.csdnimg.cn/blog_migrate/c05bbdc04604fac57de8da0594d72e35.png

 六、缓存雪崩

1.  什么是缓存雪崩?

        缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量哀求到达数据库,带来巨大压力。
缓存击穿是部分key过期导致的严重后果,而缓存雪崩则是因为大量的key同时过期所导致的问题 情况大抵如下图所示:
https://i-blog.csdnimg.cn/blog_migrate/d3cd2a8378b63ad22b7e491bc8799194.png


2.  缓存雪崩解决方案(4种)

(1)给不同的Key的TTL添加随机值(推荐)
        操作简单,当我们在做缓存预热的时候,就有可能在同一时间批量插入大量的数据,
那么如果它们的TTL都一样的话就可能出现大量key同时过期的情况!!!
所以我们需要在设置过期时间TTL的时候,定义一个范围,追加该范围内的一个随机数。

(2)利用Redis集群提高服务的可用性
        使用集群提高可靠性

(3)给缓存业务添加降级限流策略
        微服务的知识

(4)给业务添加多级缓存  
        请求到达浏览器,nginx可以做缓存,未命中找Redis,再未命中找JVM,最后到数据库......
七、封装 Redis 工具类

基于 StringRedisTemplate 封装一个缓存工具类,满足下列需求:
方法 1:将任意 Java 对象序列化为 json 并存储在 string 类型的 key 中,并且可以设置 TTL 过期时间
方法 2:将任意 Java 对象序列化为 json 并存储在 string 类型的 key 中,并且可以设置逻辑过期时间 存击穿题目
方法 3:根据指定的 key 查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
方法 4:根据指定的 key 查询缓存,并反序列化为指定类型,利用逻辑过期解决缓存击穿问题 将逻辑进行封装
@Slf4j
@Component
public class CacheClient {

    private final StringRedisTemplate stringRedisTemplate;

    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

    public CacheClient(StringRedisTemplate stringRedisTemplate) {
      this.stringRedisTemplate = stringRedisTemplate;
    }

    public void set(String key, Object value, Long time, TimeUnit unit) {
      stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
    }

    public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
      // 设置逻辑过期
      RedisData redisData = new RedisData();
      redisData.setData(value);
      redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
      // 写入Redis
      stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
    }

    public <R,ID> R queryWithPassThrough(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
      String key = keyPrefix + id;
      // 1.从redis查询商铺缓存
      String json = stringRedisTemplate.opsForValue().get(key);
      // 2.判断是否存在
      if (StrUtil.isNotBlank(json)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(json, type);
      }
      // 判断命中的是否是空值
      if (json != null) {
            // 返回一个错误信息
            return null;
      }

      // 4.不存在,根据id查询数据库
      R r = dbFallback.apply(id);
      // 5.不存在,返回错误
      if (r == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            // 返回错误信息
            return null;
      }
      // 6.存在,写入redis
      this.set(key, r, time, unit);
      return r;
    }

    public <R, ID> R queryWithLogicalExpire(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
      String key = keyPrefix + id;
      // 1.从redis查询商铺缓存
      String json = stringRedisTemplate.opsForValue().get(key);
      // 2.判断是否存在
      if (StrUtil.isBlank(json)) {
            // 3.存在,直接返回
            return null;
      }
      // 4.命中,需要先把json反序列化为对象
      RedisData redisData = JSONUtil.toBean(json, RedisData.class);
      R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
      LocalDateTime expireTime = redisData.getExpireTime();
      // 5.判断是否过期
      if(expireTime.isAfter(LocalDateTime.now())) {
            // 5.1.未过期,直接返回店铺信息
            return r;
      }
      // 5.2.已过期,需要缓存重建
      // 6.缓存重建
      // 6.1.获取互斥锁
      String lockKey = LOCK_SHOP_KEY + id;
      boolean isLock = tryLock(lockKey);
      // 6.2.判断是否获取锁成功
      if (isLock){
            // 6.3.成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                try {
                  // 查询数据库
                  R newR = dbFallback.apply(id);
                  // 重建缓存
                  this.setWithLogicalExpire(key, newR, time, unit);
                } catch (Exception e) {
                  throw new RuntimeException(e);
                }finally {
                  // 释放锁
                  unlock(lockKey);
                }
            });
      }
      // 6.4.返回过期的商铺信息
      return r;
    }

    public <R, ID> R queryWithMutex(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
      String key = keyPrefix + id;
      // 1.从redis查询商铺缓存
      String shopJson = stringRedisTemplate.opsForValue().get(key);
      // 2.判断是否存在
      if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, type);
      }
      // 判断命中的是否是空值
      if (shopJson != null) {
            // 返回一个错误信息
            return null;
      }

      // 4.实现缓存重建
      // 4.1.获取互斥锁
      String lockKey = LOCK_SHOP_KEY + id;
      R r = null;
      try {
            boolean isLock = tryLock(lockKey);
            // 4.2.判断是否获取成功
            if (!isLock) {
                // 4.3.获取锁失败,休眠并重试
                Thread.sleep(50);
                return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
            }
            // 4.4.获取锁成功,根据id查询数据库
            r = dbFallback.apply(id);
            // 5.不存在,返回错误
            if (r == null) {
                // 将空值写入redis
                stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
                // 返回错误信息
                return null;
            }
            // 6.存在,写入redis
            this.set(key, r, time, unit);
      } catch (InterruptedException e) {
            throw new RuntimeException(e);
      }finally {
            // 7.释放锁
            unlock(lockKey);
      }
      // 8.返回
      return r;
    }

    private boolean tryLock(String key) {
      Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
      return BooleanUtil.isTrue(flag);
    }

    private void unlock(String key) {
      stringRedisTemplate.delete(key);
    }
}

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页: [1]
查看完整版本: Redis的缓存穿透、缓存击穿和缓存雪崩