冬雨财经 发表于 2024-9-11 23:22:45

怎样用 Java 来构建一个简单的速率限制器?

速率限制

现实世界中的用户是残暴的,而且没耐烦,布满着各种不确定性。在高并发体系中,可能会出现服务器被虚伪哀求轰炸的情况,因此您可能渴望控制这种情况。
一些实际使用情况可能如下所示:

[*]API配额管理-作为提供者,您可能渴望根据用户的付款情况限制向服务器发出API哀求的速率。这可以在客户端或服务端实现。
[*]安全性-防止DDOS攻击。
[*]成本控制--这对服务方乃至客户方来说都不是必须的。如果某个组件以非常高的速率发出一个事件,它可能有助于控制它,它可能有助于控制从客户端发送的遥测。
限速处理时的选项

根据我们处理的哀求/事件类型,可能会发生以下情况:

[*]我们可以放弃额外的哀求
[*]我们可以选择让哀求等待,直到体系将它们降低到预定义的速率。
常用限速算法


[*]令牌桶算法
[*]漏桶算法
我们将不深入讨论这些算法的内部细节,由于这超出了本文的范围。
我们将以令牌桶算法为中央。其要求如下。
令牌桶算法基于以固定速率添加令牌的固定容量桶的类比。在答应API继续之前,将查抄桶,以检察它当时是否包罗至少一个令牌。如果令牌存在,则进行API调用。如果不是,则丢弃该消息/或使其等待。
需求


[*]应该可以大概接受每秒所需的(TPS)事务或速率。
[*]如果超过我们定义的比率,则应放弃交易。
[*]应该在同时发生的情况下起作用。
高级功能(在后续文章中实现)


[*]应该可以大概平滑突发的哀求。例如,如果我们将TPS定义为5,而且所有五个哀求都在同一时间到达,那么它应该可以大概以固定的时间间隔将它们排成一行,即以200ms的时间间隔实行每个哀求。它需要一个内部定时电路。
[*]如果我们的TPS为5,而且在其中一个1秒的时段中,我们在下一秒只使用3个代币,那么我们应该可以大概提供5+2 = 7个代币作为嘉奖。但速率为每个令牌1/7(142.28ms)。奖金不应结转到下一个插槽。
让我们起首定义我们的 速率限制器:
/**
* Rate limiter helps in limiting the rate of execution of a piece of code. The rate is defined in terms of
* TPS(Transactions per second). Rate of 5 would suggest, 5 transactions/second. Transaction could be a DB call, API call,
* or a simple function call.
* <p>
* Every {@link RateLimiter} implementation should implement either {@link RateLimiter#throttle(Code)} or, {@link RateLimiter#enter()}.
* They can also choose to implement all.
* <p>
* {@link Code} represents a piece of code that needs to be rate limited. It could be a function call, if the code to be rate limited
* spreads across multiple functions, we need to use entry() and exit() contract.
*/
public interface RateLimiter {

/**
   * Rate limits the code passed inside as an argument.
   *
   * @param code representation of the piece of code that needs to be rate limited.
   * @return true if executed, false otherwise.
   */
    boolean throttle(Code code);
    /**
   * When the piece of code that needs to be rate limited cannot be represented as a contiguous
   * code, then entry() should be used before we start executing the code. This brings the code inside the rate
   * limiting boundaries.
   *
   * @return true if the code will execute and false if rate limited.
   * <p
   */
    boolean enter();
    /**
   * Interface to represent a contiguous piece of code that needs to be rate limited.
   */
    interface Code {
      /**
         * Calling this function should execute the code that is delegated to this interface.
         */
      void invoke();
    }
}
复制代码 我们的 RateLimit有两组API:一个是throttle(code),另一个是enter()。这两种方法都满足相同的功能,但采用以下两种方式:

[*]boolean throttle(代码)-如果我们有连续的代码,可以用来通报一个代码块。
[*]布尔输入() - 通常可以在API、DB或任何我们想要节省的调用之前使用。如果实行此代码后面的代码,则将返回 真 ,以及 假的如果它是速率受限的话。您可以将这些哀求排队或拒绝。
   在生产环境中您永世不会看到节省(代码)实现,由于它不是最佳的。请在评论中告诉我原因。大多数速率限制器使用雷同于enter()的API。
核心功能

为了构建速率限制器的核心,我们需要确保在恣意两秒之间不答应超过N个事务。我们将怎样做到这一点?
考虑我们进行第一笔交易的时间t0。 t0 .所以,
直到(t0 + 1)s,我们只答应进行N次交易。 (t0 + 1)s , we are allowed to make only N transactions.怎样确保这一点?在下次交易时,我们将查抄
当前时间≤(t0 + 1)。.如果没有,那么这意味着我们进入了不同的秒,而且我们被答应进行N次交易。 N transactions.让我们看一小段代码,它演示了:
long now = System.nanoTime();
if (now <= mNextSecondBoundary) { // If we are within the time limit of current second
    if (mCounter < N) { // If token available
      mLastExecutionNanos = now;
      mCounter++; // Allocate token
      invoke(code); // Invoke the code passed the throttle method.
    }
}
复制代码 那么,我们怎样定义mNextSecondBoundary呢?这将在我们进行第一个事务时完成,如前所述,我们将在完成第一个事务的时间增加一秒。
if (mLastExecutionNanos == 0L) {
    mCounter++; // Allocate the very first token here.
    mLastExecutionNanos = System.nanoTime();
    mNextSecondBoundary = mLastExecutionNanos + NANO_PER_SEC;// (10^9)
}
复制代码 如今,如果我们实行代码并看到我们进入了不同的秒,我们应该怎么做?我们将通过重置上次实行时间、可用令牌数来增强前面的代码,并通过调用 节省阀()再一次。我们的方法已经知道怎样处理新的秒。
@Override
public boolean throttle(Code code) {
    if (mTPS <= 0) {
      // We do not want anything to pass.
      return false;
    }

synchronized (mLock) {
      if (mLastExecutionNanos == 0L) {
            mCounter++;
            mLastExecutionNanos = System.nanoTime();
            mNextSecondBoundary = mLastExecutionNanos + NANO_PER_SEC;
            invoke(code);
            return true;
      } else {
            long now = System.nanoTime();
            if (now <= mNextSecondBoundary) {
                if (mCounter < mTPS) {
                  mLastExecutionNanos = now;
                  mCounter++;
                  invoke(code);
                  return true;
                } else {
                  return false;
                }
            } else {
                // Reset the counter as we in a different second now.
                mCounter = 0;
                mLastExecutionNanos = 0L;
                mNextSecondBoundary = 0L;
                return throttle(code);
            }
      }
    }
}
复制代码 在这个实现中,我们可以通报需要节省的代码块,但是这个代码有一个问题。这将工作,但它会表现不佳。不保举,但为什么呢?请在评论中告诉我。
如今,可以使用相同的构建块和enter()构建第二个API了。我们将使用相同的逻辑,但我们不会实行方法内部的代码块。相反,它将在调用enter()之后实行,就像我们实行状态管理一样。该方法的实现如下:
@Override
public boolean enter() {
    if (mTPS == 0L) {
      return false;
    }

synchronized (mBoundaryLock) {
      if (mLastExecutionNanos == 0L) {
            mLastExecutionNanos = System.nanoTime();
            mCounter++;
            mNextSecondBoundary = mLastExecutionNanos + NANO_PER_SEC;
            return true;
      } else {
            long now = System.nanoTime();
            if (now <= mNextSecondBoundary) {
                if (mCounter < mTPS) {
                  mLastExecutionNanos = now;
                  mCounter++;
                  return true;
                } else return false;
            } else {
                // Reset the counter as we in a different second now.
                mCounter = 0;
                mLastExecutionNanos = 0L;
                mNextSecondBoundary = 0L;
                return enter();
            }
      }
    }
}
复制代码 如今,我们简单的速率限制器已经可以使用了。您可以检察完整的代码 这里。
结果

我们将尝试创建一个可创建六个线程的驱动步伐代码。每个线程尝试从0到100计数,延迟为50ms(可以设置为任何数字)。我们将按如下方式启动我们的限速器:
public static void main(String[] args) {
    RateLimiter limiter = new SimpleTokenBucketRateLimiter(1);
    Thread[] group = new Thread;
    Runnable r = () -> {
      for (int i = 0; i < 100; i++) {
            try {
                Thread.sleep(50);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            if (limiter.enter()) {
                System.out.println("Values:- " + Thread.currentThread().getName() + ": " + i);
            }
      }
    };


for (int i = 0; i < 6; i++) {
      group = new Thread(r);
      group.start();
    }
}
复制代码 我们的API不支持平滑事务,而是让事务等待下一个令牌被分配,而不是丢弃哀求。在拒绝它们之后,它返回false,所以如果我们真的想的话,我们可以把它们排队。
if (limiter.enter()) {
                System.out.println("Values:- " + Thread.currentThread().getName() + ": " + i);
} else { // queue the work again }
复制代码 https://i-blog.csdnimg.cn/blog_migrate/8452bc5659df921c3675c0d876390515.png
这是TPS设置为1时的输出。
当我们尝试将TPS设置为 2我们将看到以下输出:
https://i-blog.csdnimg.cn/blog_migrate/013c78bb7ad00d85c640d513502d160d.png
真管用!
从Android的角度看


[*]考虑这样一种情况:您正在编写代码以捕获用户签名。当他们拖动指针时,您会捕获数千个点。平滑签名可能不需要所有这些参数,因此您使用速率限制进行采样。
[*]一些事件调用频率很高。你能控制的。
[*]我们有MessageQueue的空闲侦听器。当我们在主线程中侦听它时,它被随意调用。偶然候,它在一秒钟内被调用好反复。如果我们想构建一个心跳体系来告诉我们主线程何时空闲,我们可以使用它来接收每秒的事件。如果我们一秒钟内没有收到事件,我们可以假定主线程处于忙碌状态。
[*]对于您的框架/库的API配额管理,您可以根据用户选择的付款计划情况API调用。
今天先到这里吧。 我们将在后续文章中构建一个更复杂的速率限制器。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页: [1]
查看完整版本: 怎样用 Java 来构建一个简单的速率限制器?