火影 发表于 2024-9-25 02:30:40

【大语言模型_1】VLLM部署Qwen模型

1、模型下载:

              魔塔社区:魔搭社区
              huggingface:https://huggingface.co/Qwen

2、安装python环境

             1、python官网安装python 【推荐要3.8以上版本】
             2、安装vllm模块


3、启动模型

      
CUDA_VISIBLE_DEVICES=0,1 /root/vendor/Python3.10.12/bin/python3.10 -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 25010 --served-model-name mymodel --model //root/qwen2.5/qwen2.5-coder-7b-instruct/ --tensor-parallel-size 2 --max-model-len 8096 出现以下内容代表运行乐成
INFO 09-20 15:22:59 model_runner.py:1335] Graph capturing finished in 11 secs.
(VllmWorkerProcess pid=101403) INFO 09-20 15:22:59 model_runner.py:1335] Graph capturing finished in 11 secs.
INFO 09-20 15:22:59 api_server.py:224] vLLM to use /tmp/tmplc42ak3s as PROMETHEUS_MULTIPROC_DIR
WARNING 09-20 15:22:59 serving_embedding.py:190] embedding_mode is False. Embedding API will not work.
INFO 09-20 15:22:59 launcher.py:20] Available routes are:
INFO 09-20 15:22:59 launcher.py:28] Route: /openapi.json, Methods: HEAD, GET
INFO 09-20 15:22:59 launcher.py:28] Route: /docs, Methods: HEAD, GET
INFO 09-20 15:22:59 launcher.py:28] Route: /docs/oauth2-redirect, Methods: HEAD, GET
INFO 09-20 15:22:59 launcher.py:28] Route: /redoc, Methods: HEAD, GET
INFO 09-20 15:22:59 launcher.py:28] Route: /health, Methods: GET
INFO 09-20 15:22:59 launcher.py:28] Route: /tokenize, Methods: POST
INFO 09-20 15:22:59 launcher.py:28] Route: /detokenize, Methods: POST
INFO 09-20 15:22:59 launcher.py:28] Route: /v1/models, Methods: GET
INFO 09-20 15:22:59 launcher.py:28] Route: /version, Methods: GET
INFO 09-20 15:22:59 launcher.py:28] Route: /v1/chat/completions, Methods: POST
INFO 09-20 15:22:59 launcher.py:28] Route: /v1/completions, Methods: POST
INFO 09-20 15:22:59 launcher.py:28] Route: /v1/embeddings, Methods: POST
INFO 09-20 15:22:59 launcher.py:33] Launching Uvicorn with --limit_concurrency 32765. To avoid this limit at the expense of performance run with --disable-frontend-multiprocessing
INFO:   Started server process
INFO:   Waiting for application startup.
INFO:   Application startup complete.
INFO:   Uvicorn running on http://0.0.0.0:25010 4、使用python脚本调用测试

from openai import OpenAI

# 初始化客户端
client = OpenAI(base_url="http://localhost:25010/v1", api_key="EMPTY")

print("欢迎使用Qwen智能问答机器人!输入'退出'以结束对话。")

while True:
    # 获取用户输入
    print("您: ", end='', flush=True)
    user_input = input()
    if user_input.lower() in ['退出', '再见', '拜拜']:
      print("qwen: 再见!期待下次与您交谈。")
      break

    # 构造消息列表
    messages = [
      {"role": "system", "content": "你的角色是名为“qwen”的智能问答机器人"},
      {"role": "user", "content": user_input}
    ]

    try:
      # 发送请求并获取回复
      chat_completion = client.chat.completions.create(
            model="mymodel",
            messages=messages,
            #stop=[ "。"],
            stop=["<|endoftext|>", "<|im_end|>", "<|im_start|>"],
            stream = False,
      )

      # 打印模型回复
      print("qwen:", chat_completion.choices.message.content)

    except Exception as e:
      print("出现错误: {e}",e)
      print("请稍后再试或检查您的网络连接及API配置。")

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页: [1]
查看完整版本: 【大语言模型_1】VLLM部署Qwen模型