商道如狼道 发表于 2024-11-4 20:00:44

如安在YOLOv8网络中添加自界说留意力机制

在目标检测任务中,加入留意力机制可以提升模型的检测结果。本文将介绍如安在YOLOv8模型中集成多种留意力机制,如 SimAM、ShuffleAttention、TripletAttention、MHSA、CBAM 和 EMA,以增强模型对图像特征的提取能力。我们将展示每个留意力机制的代码示例,并讨论如何将这些模块添加到YOLOv8网络中。
目次



[*]1. 留意力机制示例代码

[*]1.1 SimAM 模块代码
[*]1.2 ShuffleAttention 模块代码
[*]1.3 TripletAttention 模块代码
[*]1.4 MHSA 模块代码
[*]1.5 CBAM 模块代码
[*]1.6 EMA 模块代码
[*]1.7 ECA 模块代码

[*]2. 添加留意力机制的步骤

[*]2.1 修改YOLOv8的配置文件
[*]2.2 编写自界说留意力机制模块
[*]2.3 训练和验证留意力机制

[*]3. 总结
1. 留意力机制示例代码

下面介绍六种常用的留意力机制模块,并提供代码示例。每种留意力机制都有其独特的优点,可以根据任务需求选择最适合的机制。
1.1 SimAM 模块代码

SimAM (Simple Attention Module) 是一种轻量级的留意力机制;通过简单的操纵实现了留意力机制的结果,适用于对计算资源敏感的项目。它适合那些盼望在提升模型性能的同时,尽量淘汰计算开销的任务,比如嵌入式设备上的实时目标检测。。
import torch
import torch.nn as nn


class SimAM(torch.nn.Module):
    def __init__(self, e_lambda=1e-4):
      super(SimAM, self).__init__()

      self.activaton = nn.Sigmoid()
      self.e_lambda = e_lambda

    def __repr__(self):
      s = self.__class__.__name__ + '('
      s += ('lambda=%f)' % self.e_lambda)
      return s

    @staticmethod
    def get_module_name():
      return "simam"

    def forward(self, x):
      b, c, h, w = x.size()

      n = w * h - 1

      x_minus_mu_square = (x - x.mean(dim=, keepdim=True)).pow(2)
      y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=, keepdim=True) / n + self.e_lambda)) + 0.5

      return x * self.activaton(y)


# if __name__ == '__main__':
#   input = torch.randn(3, 64, 7, 7)
#   model = SimAM()
#   outputs = model(input)
#   print(outputs.shape)

1.2 ShuffleAttention 模块代码

ShuffleAttention 适合需要全局特征交互的场景;通过通道洗牌操纵重新排列特征,确保模型能够在不同通道间传递信息,提升特征的全局表达能力。对于需要处理复杂、具有多样性特征的图像(如交通场景、复杂的自然环境),这种机制能有用提升模型的感知能力。
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter

class ShuffleAttention(nn.Module):

    def __init__(self, channel=512, reduction=16, G=8):
      super().__init__()
      self.G = G
      self.channel = channel
      self.avg_pool = nn.AdaptiveAvgPool2d(1)
      self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
      self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
      self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
      self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
      self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
      self.sigmoid = nn.Sigmoid()

    def init_weights(self):
      for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                  init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                  init.constant_(m.bias, 0)

    @staticmethod
    def channel_shuffle(x, groups):
      b, c, h, w = x.shape
      x = x.reshape(b, groups, -1, h, w)
      x = x.permute(0, 2, 1, 3, 4)

      # flatten
      x = x.reshape(b, -1, h, w)

      return x

    def forward(self, x):
      b, c, h, w = x.size()
      # group into subfeatures
      x = x.view(b * self.G, -1, h, w)# bs*G,c//G,h,w

      # channel_split
      x_0, x_1 = x.chunk(2, dim=1)# bs*G,c//(2*G),h,w

      # channel attention
      x_channel = self.avg_pool(x_0)# bs*G,c//(2*G),1,1
      x_channel = self.cweight * x_channel + self.cbias# bs*G,c//(2*G),1,1
      x_channel = x_0 * self.sigmoid(x_channel)

      # spatial attention
      x_spatial = self.gn(x_1)# bs*G,c//(2*G),h,w
      x_spatial = self.sweight * x_spatial + self.sbias# bs*G,c//(2*G),h,w
      x_spatial = x_1 * self.sigmoid(x_spatial)# bs*G,c//(2*G),h,w

      # concatenate along channel axis
      out = torch.cat(, dim=1)# bs*G,c//G,h,w
      out = out.contiguous().view(b, -1, h, w)

      # channel shuffle
      out = self.channel_shuffle(out, 2)
      return out


if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    se = ShuffleAttention(channel=512, G=8)
    output = se(input)
1.3 TripletAttention 模块代码

TripletAttention 适合需要捕捉多方向特征的场景;在通道上引入了三个方向的留意力(水平、垂直、深度),能够帮助模型更好地感知多方向上的特征。这种机制特别适用于那些需要捕捉方向性信息的任务,比如门路标记检测和自然场景理解。
import torch
import torch.nn as nn


class BasicConv(nn.Module):# https://arxiv.org/pdf/2010.03045.pdf
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
               bn=True, bias=False):
      super(BasicConv, self).__init__()
      self.out_channels = out_planes
      self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
                              dilation=dilation, groups=groups, bias=bias)
      self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
      self.relu = nn.ReLU() if relu else None

    def forward(self, x):
      x = self.conv(x)
      if self.bn is not None:
            x = self.bn(x)
      if self.relu is not None:
            x = self.relu(x)
      return x


class ZPool(nn.Module):
    def forward(self, x):
      return torch.cat((torch.max(x, 1).unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)


class AttentionGate(nn.Module):
    def __init__(self):
      super(AttentionGate, self).__init__()
      kernel_size = 7
      self.compress = ZPool()
      self.conv = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False)

    def forward(self, x):
      x_compress = self.compress(x)
      x_out = self.conv(x_compress)
      scale = torch.sigmoid_(x_out)
      return x * scale


class TripletAttention(nn.Module):
    def __init__(self, no_spatial=False):
      super(TripletAttention, self).__init__()
      self.cw = AttentionGate()
      self.hc = AttentionGate()
      self.no_spatial = no_spatial
      if not no_spatial:
            self.hw = AttentionGate()

    def forward(self, x):
      x_perm1 = x.permute(0, 2, 1, 3).contiguous()
      x_out1 = self.cw(x_perm1)
      x_out11 = x_out1.permute(0, 2, 1, 3).contiguous()
      x_perm2 = x.permute(0, 3, 2, 1).contiguous()
      x_out2 = self.hc(x_perm2)
      x_out21 = x_out2.permute(0, 3, 2, 1).contiguous()
      if not self.no_spatial:
            x_out = self.hw(x)
            x_out = 1 / 3 * (x_out + x_out11 + x_out21)
      else:
            x_out = 1 / 2 * (x_out11 + x_out21)
      return x_out
1.4 MHSA 模块代码

MHSA (Multi-Head Self-Attention) 是常用于Transformer模型的留意力机制,适合大规模上下文建模的场景;通过多头自留意力的机制,能够帮助模型捕捉图像中的长距离依赖关系。它在需要处理上下文信息的任务中体现出色,如自然场景中的多物体检测。对于需要全局信息并且图像内物体之间具有复杂相互关系的任务,MHSA 是理想的选择。
import torch
import torch.nn as nn

class MHSA(nn.Module):
    def __init__(self, n_dims, width=14, height=14, heads=4, pos_emb=False):
      super(MHSA, self).__init__()

      self.heads = heads
      self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1)
      self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1)
      self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1)
      self.pos = pos_emb
      if self.pos:
            self.rel_h_weight = nn.Parameter(torch.randn(),
                                             requires_grad=True)
            self.rel_w_weight = nn.Parameter(torch.randn(),
                                             requires_grad=True)
      self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
      n_batch, C, width, height = x.size()
      q = self.query(x).view(n_batch, self.heads, C // self.heads, -1)
      k = self.key(x).view(n_batch, self.heads, C // self.heads, -1)
      v = self.value(x).view(n_batch, self.heads, C // self.heads, -1)
      content_content = torch.matmul(q.permute(0, 1, 3, 2), k)# 1,C,h*w,h*w
      c1, c2, c3, c4 = content_content.size()
      if self.pos:
            content_position = (self.rel_h_weight + self.rel_w_weight).view(1, self.heads, C // self.heads, -1).permute(
                0, 1, 3, 2)# 1,4,1024,64

            content_position = torch.matmul(content_position, q)# ()
            content_position = content_position if (
                  content_content.shape == content_position.shape) else content_position[:, :, :c3, ]
            assert (content_content.shape == content_position.shape)
            energy = content_content + content_position
      else:
            energy = content_content
      attention = self.softmax(energy)
      out = torch.matmul(v, attention.permute(0, 1, 3, 2))# 1,4,256,64
      out = out.view(n_batch, C, width, height)
      return out

# if __name__ == '__main__':
#   input = torch.randn(50, 512, 7, 7)
#   mhsa = MHSA(n_dims=512)
#   output = mhsa(input)
#   print(output.shape)
1.5 CBAM 模块代码

CBAM(Convolutional Block Attention Module)适合需要联合通道和空间特征的场景;通过联合通道留意力和空间留意力,帮助网络更加精准地捕捉图像中的关键区域。它适用于大多数量标检测任务,特别是当需要细化某些特定物体的检测时,比如在自动驾驶中的行人检测或交通标记检测。
import torch
from torch import nn

class ChannelAttention(nn.Module):
    # Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet
    def __init__(self, channels: int) -> None:
      super().__init__()
      self.pool = nn.AdaptiveAvgPool2d(1)
      self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
      self.act = nn.Sigmoid()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
      return x * self.act(self.fc(self.pool(x)))


class SpatialAttention(nn.Module):
    # Spatial-attention module
    def __init__(self, kernel_size=7):
      super().__init__()
      assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
      padding = 3 if kernel_size == 7 else 1
      self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
      self.act = nn.Sigmoid()

    def forward(self, x):
      return x * self.act(self.cv1(torch.cat(], 1)))


class CBAM(nn.Module):
    # Convolutional Block Attention Module
    def __init__(self, c1, kernel_size=7):# ch_in, kernels
      super().__init__()
      self.channel_attention = ChannelAttention(c1)
      self.spatial_attention = SpatialAttention(kernel_size)

    def forward(self, x):
      return self.spatial_attention(self.channel_attention(x))
1.6 EMA 模块代码

EMA(Efficient Multi-Head Attention)适合盼望在多头自留意力中提升服从的场景;它通过淘汰计算复杂度而提升性能,适用于大规模数据集的训练。它在保持留意力机制强盛的特征捕捉能力的同时,还能显著低落计算成本,适合高性能要求的任务场景。
import torch
from torch import nn

class EMA(nn.Module):
    def __init__(self, channels, c2=None, factor=32):
      super(EMA, self).__init__()
      self.groups = factor
      assert channels // self.groups > 0
      self.softmax = nn.Softmax(-1)
      self.agp = nn.AdaptiveAvgPool2d((1, 1))
      self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
      self.pool_w = nn.AdaptiveAvgPool2d((1, None))
      self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)
      self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)
      self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
      b, c, h, w = x.size()
      group_x = x.reshape(b * self.groups, -1, h, w)# b*g,c//g,h,w
      x_h = self.pool_h(group_x)
      x_w = self.pool_w(group_x).permute(0, 1, 3, 2)
      hw = self.conv1x1(torch.cat(, dim=2))
      x_h, x_w = torch.split(hw, , dim=2)
      x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())
      x2 = self.conv3x3(group_x)
      x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
      x12 = x2.reshape(b * self.groups, c // self.groups, -1)# b*g, c//g, hw
      x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
      x22 = x1.reshape(b * self.groups, c // self.groups, -1)# b*g, c//g, hw
      weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)
      return (group_x * weights.sigmoid()).reshape(b, c, h, w)
1.7 ECA 模块代码

ECA(Efficient Channel Attention)适合需要高效通道留意力的场景;通过消除全毗连层,利用1D卷积进行局部交互,大大淘汰了参数量,同时仍旧保留了通道留意力的能力。它适合那些对计算资源有限定的场景,比如移动设备上进行目标检测的任务。
import torch
from torch import nn

class ECA(nn.Module):
    def __init__(self, channels: int, k_size: int = 3):
      super(ECA, self).__init__()
      self.avg_pool = nn.AdaptiveAvgPool2d(1)
      self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
      self.sigmoid = nn.Sigmoid()

    def forward(self, x):
      # Apply global average pooling
      y = self.avg_pool(x)

      # Reshape and apply 1D convolution
      y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)

      # Apply sigmoid activation and element-wise multiplication
      return x * self.sigmoid(y)
2. 添加留意力机制的步骤

2.1 修改YOLOv8的配置文件

我们可以通过在YOLOv8配置文件中指定利用留意力机制,以下是如安在第10层加入留意力机制的配置示例,以ShuffleAttention留意力机制为例,用到哪个放开哪个:
# Ultralytics YOLO
页: [1]
查看完整版本: 如安在YOLOv8网络中添加自界说留意力机制