科技颠覆者 发表于 2024-11-18 11:23:48

Elasticsearch:管理和排除 Elasticsearch 内存故障

作者:来自 Elastic Stef Nestor
https://i-blog.csdnimg.cn/direct/2a8886aea1234935b6e86a34c0835bcc.jpeg
随着 Elastic Cloud 提供可观察性、安全性和搜索等解决方案,我们将使用 Elastic Cloud 的用户范围从完整的运营团队扩大到包罗数据工程师、安全团队和顾问。作为 Elastic 支持代表,我很乐意与各种各样的用户和用例互动。
随着受众的扩大,我看到了更多关于管理资源分配的问题,特别是对分配康健状况​​进行故障排除和避免断路器的问题。我明白了!当我开始使用 Elasticsearch 时,我也有同样的问题。这是我第一次打仗管理 Java 堆和时间序列数据库分片以及扩展我本身的基础办法。
当我参加 Elastic 时,我喜欢除了文档之外,我们尚有博客和教程,如许我就可以快速上手。但随后,我在第一个月努力将我的理论知识与用户通过我的票务队列发送的错误联系起来。最终,我和其他支持代表一样发现,很多报告的错误只是分配问题的症状,同样的七个链接将使用户快速把握成功管理其资源分配的方法。
作为一名支持代表,我将介绍我们向用户发送的最重要的分配管理理论链接、我们看到的最重要的症状以及我们指导用户更新他们的配置以解决他们的资源分配问题的地方。

理论

作为 Java 应用步伐,Elasticsearch 需要从体系的物理内存中分配一些逻辑内存(堆)。这应该最多是物理 RAM 的一半,上限为 32GB。设置更高的堆使用率通常是为了应对昂贵的查询和更大的数据存储。父熔断器(Parent circuit breaker)默认为 95%,但我们发起在一连到达 85% 后扩展资源。
我剧烈保举这些概述文章以获取更多信息:


[*]A heap of trouble
[*]Heap: Sizing and swapping

配置

Elasticsearch 的默认设置会根据节点角色和总内存自动调整 JVM 堆的巨细。但是,你可以根据需要通过以下三种方式直接配置它:
1. 直接在本地 Elasticsearch 文件的 config > jvm.options 文件中进行配置:
## JVM configuration

################################################################
## IMPORTANT: JVM heap size
################################################################



# Xms represents the initial size of total heap space
# Xmx represents the maximum size of total heap space

-Xms4g
-Xmx4g 2. 作为 docker-compose 中的 Elasticsearch 环境变量:
version: '2.2'
services:
es01:
        image: docker.elastic.co/elasticsearch/elasticsearch:7.12.0
        environment:
        - node.name=es01
        - cluster.name=es
        - bootstrap.memory_lock=true
        - "ES_JAVA_OPTS=-Xms4g -Xmx4g"
        - discovery.type=single-node
        ulimits:
        memlock:
            soft: -1
            hard: -1
        ports:
        - 9200:9200
3. 通过我们的 Elastic Cloud Hosted > Deployment > Edit 视图。注意:下拉菜单分配物理内存,约莫一半将分配给堆。
https://i-blog.csdnimg.cn/direct/45007885f7b2400695a923949e5560eb.png

故障排除

如果你现在遇到集群性能问题,则最有可能归结为常见缘故原由:


[*]配置问题:主节点规模过小,没有 ILM 策略
[*]容量导致:请求速率/负载过高,重叠的昂贵查询/写入
所有以下 cURL/API 请求都可以在 Elastic Cloud Hosted > Elasticsearch API 控制台中、作为 Elasticsearch API 的 cURL 或在 Kibana > Dev Tools 下进行。

分配康健状况

数据索引存储在子分片中,这些子分片在维护以及搜索/写入请求期间会使用堆内存。分片巨细不应超过 50GB。
https://i-blog.csdnimg.cn/direct/0d531e671fc1495593bf2c2709d82097.png
以上述拥有 8GB 物理内存的两地域 Elastic Cloud 托管示例为例(统共分配两个节点),我们可以用以下下令检察示例:_cat/allocation。
GET /_cat/allocation?v=true&h=shards,node
shards node
    41 instance-0000000001
    41 instance-0000000000 以及:_cluster/health。
GET /_cluster/health?filter_path=status,*_shards

{
"status": "green",
"unassigned_shards": 0,
"initializing_shards": 0,
"active_primary_shards": 41,
"relocating_shards": 0,
"active_shards": 82,
"delayed_unassigned_shards": 0
} 如果任何分片在 active_shards 或 active_primary_shards 之外的报告数 >0,则你已确定了性能问题的缘故原由。
如果报告问题,最常见的环境是 unassigned_shards > 0。如果这些分片是主分片,你的集群将报告为 status:red,如果只有副本,它将报告为 status:yellow。 更多有关这些状态的形貌请参考文章 “Elasticsearch 中的一些重要概念: cluster, node, index, document, shards 及 replica”。(这就是为什么在索引上设置副本很重要的缘故原由 —— 如果集群遇到问题,它可以规复,而不是履历数据丢失。)让我们假设我们有一个带有单个未分配分片的 status:yellow。为了观察,我们将通过 _cat/shards 检察哪个索引分片有问题。
GET _cat/shards?v=true&s=state
index                                         shard prirep state            docs   store ip               node
logs                                          0         p        STARTED           210.1kb 10.42.255.40 instance-0000000001
logs                                          0         r        UNASSIGNED
kibana_sample_data_logs                       0         p        STARTED         1407410.6mb 10.42.255.40 instance-0000000001
.kibana_1                                   0         p        STARTED        2261   3.8mb 10.42.255.40 instance-0000000001 因此,这将实用于我们的非体系索引日志,这些日志具有未分配的副天职片。让我们通过运行 _cluster/allocation/explain 来检察是什么让它陷入逆境。(专业提示:当你升级到我们官方的技术支持时,这正是我们所做的。)
GET _cluster/allocation/explain?pretty&filter_path=index,node_allocation_decisions.node_name,node_allocation_decisions.deciders.* { "index": "logs",
"node_allocation_decisions": [{
      "node_name": "instance-0000000005",
      "deciders": [{
          "decider": "data_tier",
          "decision": "NO",
          "explanation": "node does not match any index setting tier filters "
}]}]} 此错误消息指向 data_hot,它是索引生命周期管理 (index lifecycle management - ILM) 策略的一部门,表明我们的 ILM 策略与我们当前的索引设置不一致。在这种环境下,此错误的缘故原由是设置了热温(hot-warm) ILM 策略而没有指定热温节点。(我需要包管某些事情会失败,以是这是我为大家强制提供的错误示例。有关更多信息,请参阅此示例故障排除视频以获取解决方案演练。)
如果你在没有任何未分配的分片时运行此下令,你将收到 400 错误,表现无法找到任何未分配的分片来表明,由于没有任何错误需要报告。如果你遇到非逻辑缘故原由(比方,临时网络错误,如分配期间节点离开集群),那么你可以使用 Elastic 的方便的 _cluster/reroute。
POST /_cluster/reroute 此请求未颠末自定义,将启动一个异步背景历程,尝试分配所有当前状态为:UNASSIGNED 的分片。(不要像我一样,不等它完成就联系开辟职员,由于我以为它会立即发生,而且巧合的是,它会实时升级,让他们说没什么问题,由于什么都没有了。)有关更多信息,请参阅此故障排除视频,以监控分配康健状况​​。

熔断器 - Circuit breakers

堆分配到达最大值可能会导致对集群的请求超时或出错,并且常常会导致集群遇到熔断器非常。熔断器错误会导致 elasticsearch.log 事件,比方:
Caused by: org.elasticsearch.common.breaker.CircuitBreakingException: Data too large, data for [<transport_request>] would be , which is larger than the limit of , usages GET /_cat/nodes?v=true&h=name,node*,heap*
# heap = JVM (logical memory reserved for heap)
# ram= physical memory

name                              node.role heap.current heap.percent heap.max
tiebreaker-0000000002 mv             119.8mb         23    508mb
instance-0000000001   himrst         1.8gb         48    3.9gb
instance-0000000000   himrst         2.8gb         73    3.9gb 大概,如果你之前已启用它,请导航至 Kibana > Stack Monitoring。
https://i-blog.csdnimg.cn/direct/8c75be7665ab44a5b525feec24ebe897.png
如果你已确认本身正在触及内存熔断器,则需要思量临时增加堆,以便给本身留出观察的喘息空间。观察根本缘故原由时,请检察集群署理日志或 elasticsearch.log 以查找前面的一连事件。你将寻找:


[*]昂贵的查询,尤其是:

[*]高存储桶聚合
[*]当我发现搜索在根据搜索 size 或 bucket 维度运行查询之前会临时分配堆的某个端口时,我感到非常愚蠢,因此设置 10,000,000 确实让我的运营团队感到心痛。

[*]非优化映射

[*]感到愚蠢的第二个缘故原由是,我认为进行分层报告会比扁平化数据搜索更好(但事实并非如此)。

[*]请求量/速率:通常是批量或异步查询

扩展时间

如果这不是你第一次遇到熔断器,大概你猜疑这将是一个一连存在的问题(比方,一连到达 85%,因此是时间思量扩展资源了),你需要细致检察 JVM 内存压力作为长期堆指标。你可以在 Elastic Cloud Hosted > Deployment 中检查这一点。
https://i-blog.csdnimg.cn/direct/1cf5a52424f84722925c7efeb350458d.png
大概你可以从 _nodes/stats计算它:
GET /_nodes/stats?filter_path=nodes.*.jvm.mem.pools.old

{"nodes": { "node_id": { "jvm": { "mem": { "pools": { "old": {
"max_in_bytes": 532676608,
"peak_max_in_bytes": 532676608,
"peak_used_in_bytes": 104465408,
"used_in_bytes": 104465408
}}}}}}} 在这里:
JVM Memory Pressure = used_in_bytes / max_in_bytes 这种环境的一个潜在症状是 elasticsearch.log 中的垃圾网络器 (gc) 事件出现频率高且一连时间长:
overhead, spent collecting in the last 如果你确认了这种环境,则需要思量扩展集群或淘汰对集群的需求。你需要观察/思量:


[*]增加堆资源(堆/节点;节点数)
[*]淘汰分片(删除不须要/旧数据;使用 ILM 将数据放入热/冷存储中,以便缩小数据;关闭你不关心丢失的数据的副本)

我们随时为你提供帮助

哇哦!从我在 Elastic 支持中看到的环境来看,这是最常见的用户工单的概要:未分配的分片、不平衡的分片堆、熔断器、高垃圾网络和分配错误。所有这些都是焦点资源分配管理对话的症状。盼望你现在也知原理论息争决步骤。
不过,此时,如果你在解决问题时遇到困难,请随时与我们联系。我们随时为你提供帮助!联系我们:


[*]Elastic 讨论
[*]Elastic 社区 Slack
[*]Elastic 咨询
[*]Elastic 培训
[*]Elastic 支持
为我们可以或许以非 Ops(也喜欢 Ops)的身份自行管理 Elastic Stack 的资源分配的本事而欢呼!

原文:Managing and troubleshooting Elasticsearch memory | Elastic Blog

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页: [1]
查看完整版本: Elasticsearch:管理和排除 Elasticsearch 内存故障