鸿蒙OpenHarmony【外设驱动使用之USB】 子体系
USB概述
功能简介
USB(Universal Serial Bus)通用串行总线,包含了主机端(Host)和设备端(Device)。主机端负责USB总线中的数据传输及端口管理,设备端则可以毗连各种外设,以是USB驱动开辟又分为主机端驱动开辟和设备端驱动开辟。
OpenHarmony体系USB模块支持USB业务的开辟,提供USB相干的功能,提供用户态第三方功能驱动的USB设备数据读写接口,以及提供创建和删除USB设备,接口的事件获取、打开和关闭等,管道同步异步读写通信,设置USB自界说属性等。
USB DDK(USB DriverDevelop Kit)是HDF驱动框架为开辟者提供的USB驱动程序开辟套件,包括USB Host DDK及USB Device DDK两部门,支持基于用户态开辟USB设备驱动的同时,还提供了丰富的USB驱动开辟本领,让广大开辟者能精准且高效的开辟USB驱动程序。
根本概念
[*] 管道
管道(Pipe)是主机端和设备端点之间数据传输的模型。任何USB设备一旦上电就存在一个信息管道,即默认的控制管道,USB主机通过该管道来获取设备的描述、配置、状态,并对设备进行配置;管道和端点关联,两者有相同的属性,如支持的传输范例、最大包长度、传输方向等。
[*] 端点
端点(Endpoint)是USB设备中的可以进行数据收发的最小单元,支持单向大概双向的数据传输。一个USB设备可以包括若干个端点,不同的端点以端点编号和方向区分。不同端点可以支持不同的传输范例、访问间隔以及最大数据包大小。除端点0外,所有的端点只支持一个方向的数据传输。端点0是一个特殊的端点,它支持双向的控制传输。
[*] 接口
应用软件通过和设备之间的数据互换来完成设备的控制和数据传输。由于同一管道只支持一种范例的数据传输,因此这个过程中通常需要多个管道来完成数据互换。像这样用在一起来对设备进行控制的若干管道的聚集称为接口。
[*] 描述符
描述符(Descriptor)是用于描述设备属性(Attributes)的数据结构,第一个字节表示描述符的大小(字节数),第二个字节表示描述符的范例(Type)。
运作机制
USB Host DDK
USB Host DDK为开辟者提供了主机端USB驱动开辟本领,按照功能分为三大类,分别是DDK初始化类、interface对象利用类及request对象利用类。
图1 USB Host驱动模型图
https://i-blog.csdnimg.cn/direct/5f7d9d6b96554750a582ab01a3741776.png
[*]USB Interface Pool负责USB Interface管理。提供USB Interface接口对象的申请和回收,USB Interface接口对象用来记录设备端口信息以及资源。USB Interface Pool按照USB Port对USB Interface进行分类管理。同时,此模块还提供了USB DDK API,方便开辟者进行USB数据读写利用。
[*]USB Protocol Layer提供USB协议封装,根据USB协议对设备IO/控制命令进行翻译息争析”,同时负责设备描述符的管理,根据USB Device上报的罗列信息,匹配对应的描述符;构建对应的USB Interface接口对象,并将其加入到USB Interface Pool中管理。
[*]Device IO Manager负责USB IO哀求管理,提供了同步IO和异步IO管理机制,对于异步IO,IO Manager负责将该哀求记录下来,然后通过Raw API Library提供的接口依次处理待发送的IO哀求;当收到USB控制器应答的处理结果后,IO接收线程负责剖析并上报处理结果给上层调用者。
[*]Raw API Library抽象了底层OS本领,界说了同一的OS本领接口,对外提供了USB RAW API,方便开辟者实现更加复杂的驱动功能。
[*]OS Adapter用于封装与平台(Linux和LiteOS)相干的利用,根据不同平台配置编译对应平台的封装接口。在Linux平台上,访问USB FS的利用,全部都封装在这个模块中;而在LiteOS平台上,基于FreeBSD USB框架的设备访问利用,也都全部封装在这个模块中。
[*]PNP Notify用于动态监测USB状态变化,当有新设备添加/移除时,变化设备信息。同时将所有USB设备信息都通过KHDF上报给UHDF侧的PNP Notify Manager模块来完成加载/卸载第三方功能驱动。
USB Device DDK
USB Device DDK向开辟者提供了设备端USB驱动开辟本领。比方,USB端口动态注册和去注册本领,开辟者可以基于本领实现USB端口的动态添加和组合;动态实例化本领,支持根据动态下发设备、配置、接口及端点描述符创建立备实例及传输通道;用户态的数据发送及接收本领,支持用户态下发送及接收数据;复合设备本领,支持一个物理设备上多个逻辑设备,实现多个逻辑设备间隔离,并支持不同逻辑设备同时被不同的应用历程访问。
图2 USB Device驱动模型图
https://i-blog.csdnimg.cn/direct/a6989fa30203408cbfefd9a8afc342b9.png
[*]SDK IF负责将USB设备按照设备、接口、管道进行逻辑划分,对配置管理、设备管理、IO管理进行封装。此模块还向开辟者提供了设备创建、获取接口、接收Event事件、收发数据等设备测驱动开辟的本领接口。
[*]Configuration Manager负责剖析HCS文件描述的USB描述符信息,得到的USB描述符信息用于设备创建,同时模块还提供了自界说属性的读取、创建、删除、修改等利用。
[*]Device Manager负责根据配置模块剖析USB描述符,并根据USB描述符创建立备。同时还负责获取设备、删除设备、获取设备状态,获取设备上面接口信息。
[*]IO Manager负责数据的读写,包括Events事件、数据读写完成后事件的接收,支持同步和异步模式数据读写。
[*]Adapter IF主要是对复合设备配置驱动及通用功能驱动设备节点利用进行封装,为上层提供同一的设备管理接口。
[*]Adapter该模块由复合设备配置驱动及通用功能驱动提供。
开辟指导
由于内核态开辟USB驱动较复杂,需要开辟者对USB协议要有较深的了解才华很好的使用,对开辟者的要求相对较高。USB DDK的引入是为了让开辟者能在用户态更方便的开辟USB驱动。
场景介绍
USB Host DDK为开辟者提供了普通模式和专家模式,普通模式下,开辟者可通过USB DDK API直接完成相干USB数据读写利用,不需要过多关注底层的传输细节。专家模式下,开辟者通过USB RAW API直接访问OS平台中USB通道的接口,自界说实现更加复杂的功能。USB Device DDk为开辟者提供了管理USB设备、接口界说及USB数据哀求等功能。下文将介绍相干API。
接口说明
USB主机端驱动程序开辟相干接口(普通模式)如下
表1 USB主机端驱动程序开辟相干接口(普通模式)
接口名称功能描述int32_t UsbInitHostSdk(struct UsbSession **session);
USB主机端驱动开辟工具包初始化struct UsbInterface *UsbClaimInterface(const struct UsbSession *session, uint8_t busNum, uint8_t usbAddr, uint8_t interfaceIndex)获取USB接口对象UsbInterfaceHandle *UsbOpenInterface(const struct UsbInterface *interfaceObj);
打开USB对象接口int32_t UsbGetPipeInfo(const UsbInterfaceHandle *interfaceHandle, uint8_t settingIndex, uint8_t pipeId, struct UsbPipeInfo *pipeInfo);
获取指定可选设置的管道信息struct UsbRequest *UsbAllocRequest(const UsbInterfaceHandle *interfaceHandle, int32_t isoPackets , int32_t length);分配哀求对象int32_t UsbFillRequest(const struct UsbRequest *request, const UsbInterfaceHandle *interfaceHandle, const struct UsbRequestParams *params);
添补哀求int32_t UsbSubmitRequestSync(const struct UsbRequest *request);发送同步哀求 USB主机端驱动程序开辟相干接口(专家模式)如下
表2 USB主机端驱动程序开辟相干接口(专家模式)
接口名称功能描述int32_t UsbRawInit(struct UsbSession **session);
USB驱动开辟工具包专家模式初始化UsbRawHandle *UsbRawOpenDevice(const struct UsbSession *session, uint8_t busNum, uint8_t usbAddr);
打开USB设备对象int32_t UsbRawSendControlRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbControlRequestData *requestData);实行同步控制传输int32_t UsbRawSendBulkRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRequestData *requestData);实行同步批量传输int32_t UsbRawSendInterruptRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRequestData *requestData);实行同步停止传输int32_t UsbRawGetConfigDescriptor(const UsbRawDevice *rawDev, uint8_t configIndex, struct UsbRawConfigDescriptor **config);
获取给定设备指定ID的设备配置描述符int32_t UsbRawFillInterruptRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRawFillRequestData *fillData);添补停止传输哀求所需信息int32_t UsbRawFillIsoRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRawFillRequestData *fillData);添补同步传输(Isochronous Transfers)哀求所需信息int32_t UsbRawSubmitRequest(const struct UsbRawRequest *request);提交一个传输哀求int32_t UsbRawCancelRequest(const struct UsbRawRequest *request);取消一个传输哀求int32_t UsbRawHandleRequests(const UsbRawHandle *devHandle);传输哀求事件完成处理 USB设备端用于管理USB设备的相干接口如下
表3 USB设备端用于管理USB设备的相干接口
接口名称功能描述const struct UsbFnDevice *UsbFnCreateDevice(const char *udcName, const struct UsbFnDescriptorData *descriptor);创建USB设备int32_t UsbFnRemoveDevice(struct UsbFnDevice *fnDevice);删除USB设备const struct UsbFnDevice *UsbFnGetDevice(const char *udcName);获取USB设备 USB设备端用于USB接口界说的相干接口如下
表4 USB设备端用于USB接口界说的相干接口
接口名称功能描述int32_t UsbFnStartRecvInterfaceEvent(struct UsbFnInterface *interface, uint32_t eventMask, UsbFnEventCallback callback, void *context);开始接受Event事件int32_t UsbFnStopRecvInterfaceEvent(struct UsbFnInterface *interface);停止接受Event事件UsbFnInterfaceHandle UsbFnOpenInterface(struct UsbFnInterface *interface);打开一个接口int32_t UsbFnCloseInterface(UsbFnInterfaceHandle handle);关闭一个接口int32_t UsbFnGetInterfacePipeInfo(struct UsbFnInterface *interface, uint8_t pipeId, struct UsbFnPipeInfo *info);获取管道信息int32_t UsbFnSetInterfaceProp(const struct UsbFnInterface *interface, const char *name, const char *value);设置自界说属性 USB设备端用于管理USB数据哀求的相干接口如下
表5 USB设备端用于管理USB数据哀求的相干接口
接口名称功能描述struct UsbFnRequest *UsbFnAllocCtrlRequest(UsbFnInterfaceHandle handle, uint32_t len);申请一个控制哀求struct UsbFnRequest *UsbFnAllocRequest(UsbFnInterfaceHandle handle, uint8_t pipe, uint32_t len);申请一个数据哀求int32_t UsbFnFreeRequest(struct UsbFnRequest *req);开释一个哀求int32_t UsbFnSubmitRequestAsync(struct UsbFnRequest *req);发送异步哀求int32_t UsbFnSubmitRequestSync(struct UsbFnRequest *req, uint32_t timeout);发送同步哀求int32_t UsbFnCancelRequest(struct UsbFnRequest *req);取消哀求 开辟步骤
USB驱动基于HDF框架、Platform和OSAL基础接口进行开辟,不区分利用体系和芯片平台,为不同USB器件提供同一的驱动模型。此处以串口为例,分别介绍USB Host和USB Device驱动开辟的详细过程。
Host DDK API驱动开辟
[*] 在设备私有数据HCS中配置,完成主机端驱动总体信息的配置,具体如下:
root {
module = "usb_pnp_device";
usb_pnp_config {
match_attr = "usb_pnp_match";
usb_pnp_device_id = "UsbPnpDeviceId";
UsbPnpDeviceId {
idTableList = [
"host_acm_table"
];
host_acm_table {
// 驱动模块名,该字段的值必须和驱动入口结构的moduleName一致
moduleName = "usbhost_acm";
// 驱动对外发布服务的名称,必须唯一
serviceName = "usbhost_acm_pnp_service";
// 驱动私有数据匹配关键字
deviceMatchAttr = "usbhost_acm_pnp_matchAttr";
// 从该字段开始(包含该字段)之后数据长度,以byte为单位
length = 21;
// USB驱动匹配规则vendorId+productId+interfaceSubClass+interfaceProtocol+interfaceNumber
matchFlag = 0x0303;
// 厂商编号
vendorId = 0x12D1;
// 产品编号
productId = 0x5000;
// 设备出厂编号,低16位
bcdDeviceLow = 0x0000;
// 设备出厂编号,高16位
bcdDeviceHigh = 0x0000;
// USB分配的设备类代码
deviceClass = 0;
// USB分配的子类代码
deviceSubClass = 0;
// USB分配的设备协议代码
deviceProtocol = 0;
// 接口类型,根据实际需要可填写多个
interfaceClass = ;
// 接口子类型,根据实际需要可填写多个
interfaceSubClass = ;
// 接口所遵循的协议,根据实际需要可填写多个
interfaceProtocol = ;
// 接口的编号,根据实际需要可填写多个
interfaceNumber = ;
}
}
}
}
[*] USB主机端驱动开辟工具包初始化。
int32_t UsbInitHostSdk(struct UsbSession **session);
[*] 步骤2初始化完后获取UsbInterface对象。
const struct UsbInterface *UsbClaimInterface(const struct UsbSession *session, uint8_t busNum, uint8_t usbAddr, uint8_t interfaceIndex);
[*] 打开步骤3获取到的UsbInterface接口对象,获取相应接口的UsbInterfaceHandle对象。
UsbInterfaceHandle *UsbOpenInterface(const struct UsbInterface *interfaceObj);
[*] 根据步骤4获取到的UsbInterfaceHandle对象,获取指定索引为pipeIndex的pipeInfo信息。
int32_t UsbGetPipeInfo(const UsbInterfaceHandle *interfaceHandle, uint8_t settingIndex, uint8_t pipeId, struct UsbPipeInfo *pipeInfo);
[*] 为步骤4获取到的UsbInterfaceHandle预先分配待发送的IO Request对象。
struct UsbRequest *UsbAllocRequest(const UsbInterfaceHandle *interfaceHandle, int32_t isoPackets, int32_t length);
[*] 根据输入参数params添补步骤6预先分配的IO Request。
int32_t UsbFillRequest(const struct UsbRequest *request, const UsbInterfaceHandle *interfaceHandle, const struct UsbRequestParams *params);
[*] 提交IO Request对象,可以选择同步或异步两种模式。
int32_t UsbSubmitRequestSync(const struct UsbRequest *request); //发送同步IO请求
int32_t UsbSubmitRequestAsync(const struct UsbRequest *request); //发送异步IO请求
Host RAW API驱动开辟
[*] 同Host DDK API的步骤1一样,在设备私有数据HCS中配置。
[*] 初始化Host RAW,并打开USB设备,然后获取描述符,通过描述符获取接口、端点信息。
int32_t UsbRawInit(struct UsbSession **session);
[*] 待步骤2完成后打开USB设备。
UsbRawHandle *UsbRawOpenDevice(const struct UsbSession *session, uint8_t busNum, uint8_t usbAddr);
[*] 待步骤3完成后获取描述符,通过描述符获取接口、端点信息。
int32_t UsbRawGetConfigDescriptor(const UsbRawDevice *rawDev, uint8_t configIndex, struct UsbRawConfigDescriptor **config);
[*] 分配Request,并根据传输范例使用相应接口对Request进行添补。
int32_t UsbRawFillBulkRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRawFillRequestData *fillData); // 填充用于批量传输的请求
int32_t UsbRawFillControlSetup(const unsigned char *setup, const struct UsbControlRequestData *requestData);
int32_t UsbRawFillControlRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRawFillRequestData *fillData); // 填充用于控制传输的请求
int32_t UsbRawFillInterruptRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRawFillRequestData *fillData); // 填充用于中断传输的请求
int32_t UsbRawFillIsoRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRawFillRequestData *fillData); // 填充用于同步传输的请求
[*] 提交IO Request对象,可以选择同步或异步两种模式。
int32_t UsbRawSendControlRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbControlRequestData *requestData); //发送同步USB控制传输请求
int32_t UsbRawSendBulkRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRequestData *requestData); //发送同步USB批量传输请求
int32_t UsbRawSendInterruptRequest(const struct UsbRawRequest *request, const UsbRawHandle *devHandle, const struct UsbRequestData *requestData); //发送同步执行USB中断传输请求
int32_t UsbRawSubmitRequest(const struct UsbRawRequest *request); //提交异步IO请求
Device DDK API驱动开辟
[*] 在设备功能代码中构造描述符。
static struct UsbFnFunction g_acmFunction = {
.funcName = "f_generic.a", //功能名称
.strings = g_acmStrings, //字符串
.fsDescriptors = g_acmFsFunction, //初始化fs描述符
.hsDescriptors = g_acmHsFunction, //初始化hs描述符
.ssDescriptors = g_acmSsFunction, //初始化ss描述符
.sspDescriptors = nullptr, //ss描述符置空
};
struct UsbFnFunction *g_functions[] = {
#ifdef CDC_ECM
&g_ecmFunction,
#endif
#ifdef CDC_ACM
&g_acmFunction,
#endif
nullptr};
static struct UsbFnConfiguration g_masterConfig = { // 配置描述符
.configurationValue = 1,
.iConfiguration = USB_FUNC_CONFIG_IDX,
.attributes = USB_CFG_BUS_POWERED,
.maxPower = POWER,
.functions = g_functions,
};
static struct UsbFnConfiguration *g_configs[] = {
&g_masterConfig,
nullptr,
};
static struct UsbDeviceDescriptor g_cdcUsbFnDeviceDesc = { // 设备描述符
.bLength = sizeof(g_cdcUsbFnDeviceDesc),
.bDescriptorType = USB_DDK_DT_DEVICE,
.bcdUSB = CpuToLe16(BCD_USB),
.bDeviceClass = 0,
.bDeviceSubClass = 0,
.bDeviceProtocol = 0,
.bMaxPacketSize0 = USB_MAX_PACKET_SIZE,
.idVendor = CpuToLe16(DEVICE_VENDOR_ID),
.idProduct = CpuToLe16(DEVICE_PRODUCT_ID),
.bcdDevice = CpuToLe16(DEVICE_VERSION),
.iManufacturer = USB_FUNC_MANUFACTURER_IDX,
.iProduct = USB_FUNC_PRODUCT_IDX,
.iSerialNumber = USB_FUNC_SERIAL_IDX,
.bNumConfigurations = 1,
};
struct UsbFnDeviceDesc g_acmFnDevice = { //描述符入口
.deviceDesc = &g_cdcUsbFnDeviceDesc,
.deviceStrings = g_devStrings,
.configs = g_configs,
};
[*] 创建立备。描述符构造完成后,使用UsbFnDeviceCreate函数创建一个USB设备,并传入UDC控制器和UsbFnDescriptorData结构体。
if (useHcs == 0) { // 使用代码编写的描述符
descData.type = USBFN_DESC_DATA_TYPE_DESC;
descData.descriptor = &g_acmFnDevice;
} else { // 使用hcs编写的描述符
devMgr->descData.type = USBFN_DESC_DATA_TYPE_PROP;
devMgr->descData.property = device->property;
}
// 创建设备
fnDev = (struct UsbFnDevice *)UsbFnCreateDevice(devMgr->udcName, &devMgr->descData);
[*] 设备创建后,使用UsbFnGetInterface函数获取UsbInterface接口对象,并通过UsbFnGetInterfacePipeInfo函数获取USB管道信息。
// 获取接口
fnIface = (struct UsbFnInterface *)UsbFnGetInterface(fnDev, i);
// 获取Pipe信息
UsbFnGetInterfacePipeInfo(fnIface, i, &pipeInfo);
// 获取Handle
handle = UsbFnOpenInterface(fnIface);
// 获取控制(EP0)Request
req = UsbFnAllocCtrlRequest(acmDevice->ctrlIface.handle, sizeof(struct UsbCdcLineCoding) + sizeof(struct UsbCdcLineCoding));
// 获取Request
req = UsbFnAllocCtrlRequest(acmDevice->ctrlIface.handle, sizeof(struct UsbCdcLineCoding) + sizeof(struct UsbCdcLineCoding));
[*] 通过UsbFnStartRecvInterfaceEvent函数接收Event事件,并通过UsbFnEventCallback回调函数对Event事件做出响应。
// 开始接收Event事件
ret = UsbFnStartRecvInterfaceEvent(acmDevice->ctrlIface.fn, 0xff, AcmEventCallback, acmDevice);
// Event处理回调函数
static void UsbAcmEventCallback(struct UsbFnEvent *event)
{
struct UsbAcmDevice *acm = NULL;
if (event == NULL || event->context == NULL) {
HDF_LOGE("%{public}s: event is null", __func__);
return;
}
acm = (struct UsbAcmDevice *)event->context;
switch (event->type) {
case USBFN_STATE_BIND:
HDF_LOGI("%{public}s: receive bind event", __func__);
break;
case USBFN_STATE_UNBIND:
HDF_LOGI("%{public}s: receive unbind event", __func__);
break;
case USBFN_STATE_ENABLE:
HDF_LOGI("%{public}s: receive enable event", __func__);
AcmEnable(acm);
break;
case USBFN_STATE_DISABLE:
HDF_LOGI("%{public}s: receive disable event", __func__);
AcmDisable(acm);
acm->enableEvtCnt = 0;
break;
case USBFN_STATE_SETUP:
HDF_LOGI("%{public}s: receive setup event", __func__);
if (event->setup != NULL) {
AcmSetup(acm, event->setup);
}
break;
case USBFN_STATE_SUSPEND:
HDF_LOGI("%{public}s: receive suspend event", __func__);
AcmSuspend(acm);
break;
case USBFN_STATE_RESUME:
HDF_LOGI("%{public}s: receive resume event", __func__);
AcmResume(acm);
break;
default:
break;
}
}
[*] 收发数据,可以选择同步异步发送模式。
notify = (struct UsbCdcNotification *)req->buf;
...
ret = memcpy_s((void *)(notify + 1), length, data, length);
if (ret != EOK) {
HDF_LOGE("%s: memcpy_s failed", __func__);
return HDF_FAILURE;
}
ret = UsbFnSubmitRequestAsync(req); // 异步发送
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: send notify request failed", __func__);
acm->notifyReq = req;
}
开辟实例
本实例提供USB串口驱动开辟示例,并简要对具体关键点进行开辟说明。
Host DDK API驱动开辟
#include "usb_serial.h"
#include "hdf_base.h"
#include "hdf_log.h"
#include "hdf_usb_pnp_manage.h"
#include "osal_mem.h"
#include "osal_time.h"
#include "securec.h"
#include "usb_ddk_interface.h"
#define HDF_LOG_TAG USB_HOST_ACM
#define STR_LEN 512
static struct UsbRequest *g_syncRequest = NULL;// 定义一个USB请求
static struct UsbRequest *g_ctrlCmdRequest = NULL;
static bool g_acmReleaseFlag = false;
static uint8_t *g_acmReadBuffer = NULL;
...
static int32_t SerialCtrlMsg(struct AcmDevice *acm, uint8_t request, uint16_t value, void *buf, uint16_t len)
{
int32_t ret;
if (acm == NULL || buf == NULL || acm->intPipe == NULL) {
HDF_LOGE("%s:invalid param", __func__);
return HDF_ERR_IO;
}
uint16_t index = acm->intPipe->interfaceId;
struct UsbControlParams controlParams = {};
struct UsbRequestParams parmas = {}; // 定义一个USB请求参数对象
if (acm->ctrlReq == NULL) {
// 为获取到的UsbInterfaceHandle预先分配待发送的IO Request对象
acm->ctrlReq = UsbAllocRequest(acm->ctrDevHandle, 0, len);
if (acm->ctrlReq == NULL) {
HDF_LOGE("%s: UsbAllocRequest failed", __func__);
return HDF_ERR_IO;
}
}
controlParams.request = request;
controlParams.target = USB_REQUEST_TARGET_INTERFACE; // 接口对象
controlParams.reqType = USB_REQUEST_TYPE_CLASS; // 请求类型
controlParams.directon = USB_REQUEST_DIR_TO_DEVICE; // 从主机到设备的数据传输
controlParams.value = value;
controlParams.index = index;
controlParams.data = buf;
controlParams.size = len;
parmas.interfaceId = USB_CTRL_INTERFACE_ID; // 定义USB控制接口的默认ID
if (acm->ctrPipe != NULL) {
parmas.pipeAddress = acm->ctrPipe->pipeAddress;
parmas.pipeId = acm->ctrPipe->pipeId;
}
parmas.requestType = USB_REQUEST_PARAMS_CTRL_TYPE; // 控制类型
parmas.timeout = USB_CTRL_SET_TIMEOUT; // 设置超时时间
parmas.ctrlReq = UsbControlSetUp(&controlParams);
parmas.callback = NULL;
// 根据params填充预先分配的IO Request
ret = UsbFillRequest(acm->ctrlReq, acm->ctrDevHandle, &parmas);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: UsbFillRequest failed, ret = %d ", __func__, ret);
return ret;
}
// 发送同步IO Request
ret = UsbSubmitRequestSync(acm->ctrlReq);
if (ret != HDF_SUCCESS) {
HDF_LOGE("UsbSubmitRequestSync failed, ret = %d ", ret);
return ret;
}
if (!acm->ctrlReq->compInfo.status) {
HDF_LOGE("%sstatus=%d ", __func__, acm->ctrlReq->compInfo.status);
}
return HDF_SUCCESS;
}
...
static struct UsbInterface *GetUsbInterfaceById(const struct AcmDevice *acm, uint8_t interfaceIndex)
{
// 获取UsbInterface接口对象
return UsbClaimInterface(acm->session, acm->busNum, acm->devAddr, interfaceIndex);
}
...
static struct UsbPipeInfo *EnumePipe(
const struct AcmDevice *acm, uint8_t interfaceIndex, UsbPipeType pipeType, UsbPipeDirection pipeDirection)
{
struct UsbInterfaceInfo *info = NULL; // 定义一个USB接口信息对象
UsbInterfaceHandle *interfaceHandle = NULL; // 定义一个USB接口操作句柄,就是void *类型
if (pipeType == USB_PIPE_TYPE_CONTROL) {
info = &acm->ctrIface->info;
interfaceHandle = acm->ctrDevHandle;
} else {
// 根据interfaceIndex获取设备句柄
info = &acm->iface->info;
interfaceHandle = InterfaceIdToHandle(acm, info->interfaceIndex);
}
for (uint8_t i = 0; i <= info->pipeNum; i++) {
struct UsbPipeInfo p;
// 获取指定索引为i的pipeInfo信息
int32_t ret = UsbGetPipeInfo(interfaceHandle, info->curAltSetting, i, &p);
if (ret < 0) {
continue;
}
if ((p.pipeDirection == pipeDirection) && (p.pipeType == pipeType)) {
struct UsbPipeInfo *pi = OsalMemCalloc(sizeof(*pi)); // 开辟内存并初始化
if (pi == NULL) {
HDF_LOGE("%s: Alloc pipe failed", __func__);
return NULL;
}
p.interfaceId = info->interfaceIndex;
*pi = p;
return pi;
}
}
return NULL;
}
static struct UsbPipeInfo *GetPipe(const struct AcmDevice *acm, UsbPipeType pipeType, UsbPipeDirection pipeDirection)
{
uint8_t i;
if (acm == NULL) {
HDF_LOGE("%s: invalid param", __func__);
return NULL;
}
for (i = 0; i < acm->interfaceCnt; i++) {
struct UsbPipeInfo *p = NULL;
if (!acm->iface) {
continue;
}
// 获取控制pipe的pipeInfo信息
p = EnumePipe(acm, i, pipeType, pipeDirection);
if (p == NULL) {
continue;
}
return p;
}
return NULL;
}
/* HdfDriverEntry implementations */
static int32_t UsbSerialDriverBind(struct HdfDeviceObject *device)
{
struct UsbPnpNotifyServiceInfo *info = NULL;
errno_t err;
struct AcmDevice *acm = NULL;
if (device == NULL) {
HDF_LOGE("%s: device is null", __func__);
return HDF_ERR_INVALID_OBJECT;
}
//开辟内存空间
acm = (struct AcmDevice *)OsalMemCalloc(sizeof(*acm));
if (acm == NULL) {
HDF_LOGE("%s: Alloc usb serial device failed", __func__);
return HDF_FAILURE;
}
// 初始化互斥锁,&acm->lock表示指向互斥量的指针
if (OsalMutexInit(&acm->lock) != HDF_SUCCESS) {
HDF_LOGE("%s:%d OsalMutexInit failed", __func__, __LINE__);
goto ERROR;
}
info = (struct UsbPnpNotifyServiceInfo *)device->priv;
if (info != NULL) {
HDF_LOGD("%s:%d busNum=%d,devAddr=%d,interfaceLength=%d", __func__, __LINE__, info->busNum, info->devNum,
info->interfaceLength);
acm->busNum = (uint8_t)info->busNum;
acm->devAddr = (uint8_t)info->devNum;
acm->interfaceCnt = info->interfaceLength;
err = memcpy_s((void *)(acm->interfaceIndex), USB_MAX_INTERFACES, (const void *)info->interfaceNumber,
info->interfaceLength);
if (err != EOK) {
HDF_LOGE("%s:%d memcpy_s failed err = %d", __func__, __LINE__, err);
goto LOCK_ERROR;
}
} else {
HDF_LOGE("%s:%d info is null!", __func__, __LINE__);
goto LOCK_ERROR;
}
acm->device = device;
device->service = &(acm->service);
acm->device->service->Dispatch = UsbSerialDeviceDispatch;
HDF_LOGD("UsbSerialDriverBind=========================OK");
return HDF_SUCCESS;
LOCK_ERROR:
if (OsalMutexDestroy(&acm->lock)) {
HDF_LOGE("%s:%d OsalMutexDestroy failed", __func__, __LINE__);
}
ERROR:
OsalMemFree(acm);
acm = NULL;
return HDF_FAILURE;
}
...
static int32_t AcmAllocReadRequests(struct AcmDevice *acm)
{
int32_t ret;
struct UsbRequestParams readParmas = {};
for (int32_t i = 0; i < ACM_NR; i++) {
// 分配待发送的readReq IO Request对象
acm->readReq = UsbAllocRequest(InterfaceIdToHandle(acm, acm->dataInPipe->interfaceId), 0, acm->readSize);
if (!acm->readReq) {
HDF_LOGE("readReq request failed\n");
goto ERROR;
}
readParmas.userData = (void *)acm;
readParmas.pipeAddress = acm->dataInPipe->pipeAddress;
readParmas.pipeId = acm->dataInPipe->pipeId;
readParmas.interfaceId = acm->dataInPipe->interfaceId;
readParmas.callback = AcmReadBulk;
readParmas.requestType = USB_REQUEST_PARAMS_DATA_TYPE; /* Data type */
readParmas.timeout = USB_CTRL_SET_TIMEOUT;
readParmas.dataReq.numIsoPackets = 0;
readParmas.dataReq.directon = (((uint8_t)acm->dataInPipe->pipeDirection) >> USB_PIPE_DIR_OFFSET) & 0x1;
readParmas.dataReq.length = (int)acm->readSize;
// 根据readParams填充预先分配待发送的readReq IO Request对象
ret = UsbFillRequest(acm->readReq, InterfaceIdToHandle(acm, acm->dataInPipe->interfaceId), &readParmas);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: UsbFillRequest failed, ret=%d \n", __func__, ret);
goto ERROR;
}
}
return HDF_SUCCESS;
ERROR:
AcmFreeReadRequests(acm);
return HDF_ERR_MALLOC_FAIL;
}
static int32_t AcmAllocNotifyRequest(struct AcmDevice *acm)
{
int32_t ret;
struct UsbRequestParams intParmas = {};
// 分配待发送的中断IO Request对象
acm->notifyReq = UsbAllocRequest(InterfaceIdToHandle(acm, acm->intPipe->interfaceId), 0, acm->intSize);
if (!acm->notifyReq) {
HDF_LOGE("notifyReq request failed.\n");
return HDF_ERR_MALLOC_FAIL;
}
intParmas.userData = (void *)acm;
intParmas.pipeAddress = acm->intPipe->pipeAddress;
intParmas.pipeId = acm->intPipe->pipeId;
intParmas.interfaceId = acm->intPipe->interfaceId;
intParmas.callback = AcmCtrlIrq;
intParmas.requestType = USB_REQUEST_PARAMS_DATA_TYPE;
intParmas.timeout = USB_CTRL_SET_TIMEOUT;
intParmas.dataReq.numIsoPackets = 0;
intParmas.dataReq.directon = (((uint8_t)acm->intPipe->pipeDirection) >> USB_PIPE_DIR_OFFSET) & DIRECTION_MASK;
intParmas.dataReq.length = (int)acm->intSize;
// 填充预先分配的中断IO Request
ret = UsbFillRequest(acm->notifyReq, InterfaceIdToHandle(acm, acm->intPipe->interfaceId), &intParmas);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: UsbFillRequest failed, ret = %d", __func__, ret);
goto ERROR;
}
return HDF_SUCCESS;
ERROR:
AcmFreeNotifyReqeust(acm);
return ret;
}
static void AcmReleaseInterfaces(struct AcmDevice *acm)
{
for (uint8_t i = 0; i < acm->interfaceCnt; i++) {
if (acm->iface) {
// 释放一个USB接口对象
UsbReleaseInterface(acm->iface);
acm->iface = NULL;
}
}
if (acm->ctrIface) {
UsbReleaseInterface(acm->ctrIface);
acm->ctrIface = NULL;
}
}
static int32_t AcmClaimInterfaces(struct AcmDevice *acm)
{
for (uint8_t i = 0; i < acm->interfaceCnt; i++) {
// 获取UsbInterface接口对象
acm->iface = GetUsbInterfaceById((const struct AcmDevice *)acm, acm->interfaceIndex);
if (acm->iface == NULL) {
HDF_LOGE("%s: interface%d is null", __func__, acm->interfaceIndex);
goto ERROR;
}
}
// 获取控制接口对应的UsbInterface接口对象
acm->ctrIface = GetUsbInterfaceById((const struct AcmDevice *)acm, USB_CTRL_INTERFACE_ID);
if (acm->ctrIface == NULL) {
HDF_LOGE("%s: GetUsbInterfaceById null", __func__);
goto ERROR;
}
return HDF_SUCCESS;
ERROR:
// 根据acm->interfaceCnt循环释放接口对象
AcmReleaseInterfaces(acm);
return HDF_FAILURE;
}
static void AcmCloseInterfaces(struct AcmDevice *acm)
{
for (uint8_t i = 0; i < acm->interfaceCnt; i++) {
if (acm->devHandle) {
// 关闭一个USB设备对象
UsbCloseInterface(acm->devHandle);
acm->devHandle = NULL;
}
}
if (acm->ctrDevHandle) {
UsbCloseInterface(acm->ctrDevHandle);
acm->ctrDevHandle = NULL;
}
}
static int32_t AcmOpenInterfaces(struct AcmDevice *acm)
{
for (uint8_t i = 0; i < acm->interfaceCnt; i++) {
if (acm->iface) {
// 打开获取到的UsbInterface接口对象
acm->devHandle = UsbOpenInterface(acm->iface);
if (acm->devHandle == NULL) {
HDF_LOGE("%s: UsbOpenInterface null", __func__);
goto ERROR;
}
}
}
acm->ctrDevHandle = UsbOpenInterface(acm->ctrIface);
if (acm->ctrDevHandle == NULL) {
HDF_LOGE("%s: ctrDevHandle UsbOpenInterface null", __func__);
goto ERROR;
}
return HDF_SUCCESS;
ERROR:
// 关闭所有UsbInterface接口对象
AcmCloseInterfaces(acm);
return HDF_FAILURE;
}
static int32_t AcmGetPipes(struct AcmDevice *acm)
{
// 获取dataInPipe的pipeInfo信息
acm->dataInPipe = GetPipe(acm, USB_PIPE_TYPE_BULK, USB_PIPE_DIRECTION_IN);
if (acm->dataInPipe == NULL) {
HDF_LOGE("dataInPipe is null");
goto ERROR;
}
// 获取dataOutPipe的pipeInfo信息
acm->dataOutPipe = GetPipe(acm, USB_PIPE_TYPE_BULK, USB_PIPE_DIRECTION_OUT);
if (acm->dataOutPipe == NULL) {
HDF_LOGE("dataOutPipe is null");
goto ERROR;
}
// 获取控制pipe的pipeInfo信息
acm->ctrPipe = EnumePipe(acm, acm->ctrIface->info.interfaceIndex, USB_PIPE_TYPE_CONTROL, USB_PIPE_DIRECTION_OUT);
if (acm->ctrPipe == NULL) {
HDF_LOGE("ctrPipe is null");
goto ERROR;
}
// 获取中断pipe的pipeInfo信息
acm->intPipe = GetPipe(acm, USB_PIPE_TYPE_INTERRUPT, USB_PIPE_DIRECTION_IN);
if (acm->intPipe == NULL) {
HDF_LOGE("intPipe is null");
goto ERROR;
}
acm->readSize = acm->dataInPipe->maxPacketSize;
acm->writeSize = acm->dataOutPipe->maxPacketSize;
acm->ctrlSize = acm->ctrPipe->maxPacketSize;
acm->intSize = acm->intPipe->maxPacketSize;
return HDF_SUCCESS;
ERROR:
// 释放设备中所有的管道信息
AcmFreePipes(acm);
return HDF_FAILURE;
}
static void AcmFreeRequests(struct AcmDevice *acm)
{
if (g_syncRequest != NULL) {
UsbFreeRequest(g_syncRequest);
g_syncRequest = NULL;
}
AcmFreeReadRequests(acm);
AcmFreeNotifyReqeust(acm);
AcmFreeWriteRequests(acm);
AcmWriteBufFree(acm);
}
static int32_t AcmAllocRequests(const struct AcmDevice *acm)
{
int32_t ret;
if (AcmWriteBufAlloc(acm) < 0) {
HDF_LOGE("%s: AcmWriteBufAlloc failed", __func__);
return HDF_ERR_MALLOC_FAIL;
}
for (int32_t i = 0; i < ACM_NW; i++) {
struct AcmWb *snd = (struct AcmWb *)&(acm->wb);
// 分配待发送的IO Request对象
snd->request = UsbAllocRequest(
InterfaceIdToHandle((struct AcmDevice *)acm, acm->dataOutPipe->interfaceId), 0, acm->writeSize);
snd->instance = (struct AcmDevice *)acm;
if (snd->request == NULL) {
HDF_LOGE("%s:%d snd request fail", __func__, __LINE__);
goto ERROR_ALLOC_WRITE_REQ;
}
}
ret = AcmAllocNotifyRequest((struct AcmDevice *)acm); // 分配并填充中断IO Request对象
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s:%d AcmAllocNotifyRequest fail", __func__, __LINE__);
goto ERROR_ALLOC_INT_REQ;
}
ret = AcmAllocReadRequests((struct AcmDevice *)acm); // 分配并填充readReq IO Request对象
if (ret) {
HDF_LOGE("%s:%d AcmAllocReadRequests fail", __func__, __LINE__);
goto ERROR_ALLOC_READ_REQ;
}
return HDF_SUCCESS;
ERROR_ALLOC_READ_REQ:
AcmFreeNotifyReqeust((struct AcmDevice *)acm);
ERROR_ALLOC_INT_REQ:
AcmFreeWriteRequests((struct AcmDevice *)acm);
ERROR_ALLOC_WRITE_REQ:
AcmWriteBufFree((struct AcmDevice *)acm);
return HDF_FAILURE;
}
static int32_t AcmInit(struct AcmDevice *acm)
{
int32_t ret;
if (acm->initFlag) {
HDF_LOGE("%{public}s: initFlag is true", __func__);
return HDF_SUCCESS;
}
// 初始化Host DDK
ret = UsbInitHostSdk(NULL);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%{public}s: UsbInitHostSdk failed", __func__);
return HDF_ERR_IO;
}
acm->session = NULL;
// 根据acm->interfaceIndex分别获取UsbInterface接口对象
ret = AcmClaimInterfaces(acm);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%{public}s: AcmClaimInterfaces failed", __func__);
goto ERROR_CLAIM_INTERFACES;
}
// 根据acm->iface分别打开UsbInterface接口对象
ret = AcmOpenInterfaces(acm);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%{public}s: AcmOpenInterfaces failed", __func__);
goto ERROR_OPEN_INTERFACES;
}
// 获取管道信息的指针
ret = AcmGetPipes(acm);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%{public}s: AcmGetPipes failed", __func__);
goto ERROR_GET_PIPES;
}
ret = AcmAllocRequests(acm);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%{public}s: AcmAllocRequests failed", __func__);
goto ERROR_ALLOC_REQS;
}
acm->lineCoding.dwDTERate = CPU_TO_LE32(DATARATE);
acm->lineCoding.bCharFormat = USB_CDC_1_STOP_BITS;
acm->lineCoding.bParityType = USB_CDC_NO_PARITY;
acm->lineCoding.bDataBits = DATA_BITS_LENGTH;
acm->initFlag = true;
return HDF_SUCCESS;
ERROR_ALLOC_REQS:
AcmFreePipes(acm);
ERROR_GET_PIPES:
// 关闭所有UsbInterface接口对象
AcmCloseInterfaces(acm);
ERROR_OPEN_INTERFACES:
// 释放所有UsbInterface接口对象
AcmReleaseInterfaces(acm);
ERROR_CLAIM_INTERFACES:
// 在主机端退出USB DDK,acm->session代表指向会话上下文的指针
UsbExitHostSdk(acm->session);
acm->session = NULL;
return ret;
}
static void AcmRelease(struct AcmDevice *acm)
{
if (!(acm->initFlag)) {
HDF_LOGE("%s:%d: initFlag is false", __func__, __LINE__);
return;
}
AcmCloseInterfaces(acm);
AcmReleaseInterfaces(acm);
AcmFreeRequests(acm);
AcmFreePipes(acm);
// 在主机端退出USB DDK
UsbExitHostSdk(acm->session);
acm->session = NULL;
acm->initFlag = false;
}
static int32_t UsbSerialDriverInit(struct HdfDeviceObject *device)
{
int32_t ret;
struct AcmDevice *acm = NULL;
if (device == NULL) {
HDF_LOGE("%s: device is null", __func__);
return HDF_ERR_INVALID_OBJECT;
}
acm = (struct AcmDevice *)device->service;
// 初始化互斥锁,&acm->readLock表示指向互斥量的指针
if (acm == NULL) {
return HDF_ERR_INVALID_OBJECT;
}
OsalMutexInit(&acm->readLock);
OsalMutexInit(&acm->writeLock);
HDF_LOGD("%s:%d busNum = %d,devAddr = %d", __func__, __LINE__, acm->busNum, acm->devAddr);
// 给USB串口设备信息开辟空间并赋值
ret = UsbSerialDeviceAlloc(acm);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Serial Device alloc failed", __func__);
}
acm->initFlag = false;
g_acmReleaseFlag = false;
HDF_LOGD("%s:%d init ok!", __func__, __LINE__);
return ret;
}
static void UsbSerialDriverRelease(struct HdfDeviceObject *device)
{
struct AcmDevice *acm = NULL;
if (device == NULL) {
HDF_LOGE("%s: device is null", __func__);
return;
}
acm = (struct AcmDevice *)device->service;
if (acm == NULL) {
HDF_LOGE("%s: acm is null", __func__);
return;
}
g_acmReleaseFlag = true;
if (acm->initFlag) {
HDF_LOGE("%s:%d AcmRelease", __func__, __LINE__);
AcmRelease(acm);
}
// 释放usb串口设备信息
UsbSeriaDevicelFree(acm);
// 释放互斥锁
OsalMutexDestroy(&acm->writeLock);
OsalMutexDestroy(&acm->readLock);
OsalMutexDestroy(&acm->lock);
OsalMemFree(acm);
acm = NULL;
HDF_LOGD("%s:%d exit", __func__, __LINE__);
}
// 驱动的Bind、Init、及Release操作
struct HdfDriverEntry g_usbSerialDriverEntry = {
.moduleVersion = 1,
.moduleName = "usbhost_acm", // 驱动模块名称,必须与hcs文件中配置的名称一致
.Bind = UsbSerialDriverBind,
.Init = UsbSerialDriverInit,
.Release = UsbSerialDriverRelease,
};
HDF_INIT(g_usbSerialDriverEntry); // 驱动入口
Host RAW API驱动开辟
root {
module = "usb_pnp_device";
usb_pnp_config {
match_attr = "usb_pnp_match";
usb_pnp_device_id = "UsbPnpDeviceId";
UsbPnpDeviceId {
idTableList = [
"host_acm_rawapi_table"
];
host_acm_rawapi_table { // 驱动配置匹配表信息
// 驱动模块名,该字段的值必须和驱动入口结构的moduleName一致
moduleName = "usbhost_acm_rawapi";
// 驱动对外发布服务的名称,必须唯一
serviceName = "usbhost_acm_rawapi_service";
// 驱动私有数据匹配关键字
deviceMatchAttr = "usbhost_acm_rawapi_matchAttr";
// 从该字段开始(包含该字段)之后数据长度,以byte为单位
length = 21;
// USB驱动匹配规则vendorId+productId+interfaceSubClass+interfaceProtocol+interfaceNumber
matchFlag = 0x0303;
// 厂商编号
vendorId = 0x12D1;
// 产品编号
productId = 0x5000;
// 设备出厂编号,低16位
bcdDeviceLow = 0x0000;
// 设备出厂编号,高16位
bcdDeviceHigh = 0x0000;
// USB分配的设备类代码
deviceClass = 0;
// USB分配的子类代码
deviceSubClass = 0;
// USB分配的设备协议代码
deviceProtocol = 0;
// 接口类型,根据实际需要可填写多个
interfaceClass = ;
// 接口子类型,根据实际需要可填写多个
interfaceSubClass = ;
// 接口所遵循的协议,根据实际需要可填写多个
interfaceProtocol = ;
// 接口的编号,根据实际需要可填写多个
interfaceNumber = ;
}
}
}
}
#include <unistd.h>
#include "hdf_base.h"
#include "hdf_log.h"
#include "hdf_usb_pnp_manage.h"
#include "osal_mem.h"
#include "osal_time.h"
#include "securec.h"
#include "usb_serial_rawapi.h"
#define HDF_LOG_TAG USB_HOST_ACM_RAW_API
#define USB_CTRL_REQ_SIZE 64
#define USB_IO_THREAD_STACK_SIZE 8192
#define USB_RAW_IO_SLEEP_MS_TIME 100
#define USB_RAW_IO_STOP_WAIT_MAX_TIME 3
static struct UsbRawRequest *g_syncRequest = NULL;
static UsbRawIoProcessStatusType g_stopIoStatus = USB_RAW_IO_PROCESS_RUNNING;
struct OsalMutex g_stopIoLock;
static bool g_rawAcmReleaseFlag = false;
...
static int32_t UsbGetConfigDescriptor(UsbRawHandle *devHandle, struct UsbRawConfigDescriptor **config)
{
UsbRawDevice *dev = NULL;
int32_t activeConfig;
int32_t ret;
if (devHandle == NULL) {
HDF_LOGE("%s:%d devHandle is null", __func__, __LINE__);
return HDF_ERR_INVALID_PARAM;
}
// 获取主用设备配置
ret = UsbRawGetConfiguration(devHandle, &activeConfig);
if (ret) {
HDF_LOGE("%s:%d UsbRawGetConfiguration failed, ret = %d", __func__, __LINE__, ret);
return HDF_FAILURE;
}
HDF_LOGE("%s:%d activeConfig = %d", __func__, __LINE__, activeConfig);
// 根据指定的设备句柄获取设备指针
dev = UsbRawGetDevice(devHandle);
if (dev == NULL) {
HDF_LOGE("%s:%d UsbRawGetDevice failed", __func__, __LINE__);
return HDF_FAILURE;
}
// 根据指定的设备ID获取设备配置描述符
ret = UsbRawGetConfigDescriptor(dev, activeConfig, config);
if (ret) {
HDF_LOGE("UsbRawGetConfigDescriptor failed, ret = %d\n", ret);
return HDF_FAILURE;
}
return HDF_SUCCESS;
}
...
static int32_t UsbAllocWriteRequests(struct AcmDevice *acm)
{
int32_t i;
for (i = 0; i < ACM_NW; i++) {
struct AcmWb *snd = &acm->wb;
// 分配一个具有指定数目的同步传输分组描述符的传输请求
snd->request = UsbRawAllocRequest(acm->devHandle, 0, acm->dataOutEp->maxPacketSize);
snd->instance = acm;
if (snd->request == NULL) {
HDF_LOGE("%s: UsbRawAllocRequest failed", __func__);
return HDF_ERR_MALLOC_FAIL;
}
}
return HDF_SUCCESS;
}
...
/* HdfDriverEntry implementations */
static int32_t UsbSerialDriverBind(struct HdfDeviceObject *device)
{
struct AcmDevice *acm = NULL;
struct UsbPnpNotifyServiceInfo *info = NULL;
errno_t err;
if (device == NULL) {
HDF_LOGE("%s: device is null", __func__);
return HDF_ERR_INVALID_OBJECT;
}
acm = (struct AcmDevice *)OsalMemCalloc(sizeof(*acm));
if (acm == NULL) {
HDF_LOGE("%s: Alloc usb serial device failed", __func__);
return HDF_FAILURE;
}
if (OsalMutexInit(&acm->lock) != HDF_SUCCESS) {
HDF_LOGE("%s:%d OsalMutexInit fail", __func__, __LINE__);
goto ERROR;
}
info = (struct UsbPnpNotifyServiceInfo *)device->priv;
if (info != NULL) {
acm->busNum = (uint8_t)info->busNum;
acm->devAddr = (uint8_t)info->devNum;
acm->interfaceCnt = info->interfaceLength;
err = memcpy_s((void *)(acm->interfaceIndex), USB_MAX_INTERFACES, (const void *)info->interfaceNumber,
info->interfaceLength);
if (err != EOK) {
HDF_LOGE("%s:%d memcpy_s failed err=%d", __func__, __LINE__, err);
goto LOCK_ERROR;
}
} else {
HDF_LOGE("%s:%d info is NULL!", __func__, __LINE__);
goto LOCK_ERROR;
}
device->service = &(acm->service);
device->service->Dispatch = UsbSerialDeviceDispatch;
acm->device = device;
HDF_LOGD("UsbSerialDriverBind=========================OK");
return HDF_SUCCESS;
LOCK_ERROR:
if (OsalMutexDestroy(&acm->lock)) {
HDF_LOGE("%s:%d OsalMutexDestroy fail", __func__, __LINE__);
}
ERROR:
OsalMemFree(acm);
acm = NULL;
return HDF_FAILURE;
}
...
static int32_t UsbAllocReadRequests(struct AcmDevice *acm)
{
struct UsbRawFillRequestData reqData;
uint32_t size = acm->dataInEp->maxPacketSize;
for (int32_t i = 0; i < ACM_NR; i++) {
// 分配一个具有指定数目的同步传输分组描述符的传输请求
acm->readReq = UsbRawAllocRequest(acm->devHandle, 0, size);
if (!acm->readReq) {
HDF_LOGE("readReq request failed\n");
return HDF_ERR_MALLOC_FAIL;
}
reqData.endPoint = acm->dataInEp->addr;
reqData.numIsoPackets = 0;
reqData.callback = AcmReadBulkCallback;
reqData.userData = (void *)acm;
reqData.timeout = USB_CTRL_SET_TIMEOUT;
reqData.length = size;
// 在批量传输请求中填写所需信息
int32_t ret = UsbRawFillBulkRequest(acm->readReq, acm->devHandle, &reqData);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: FillBulkRequest failed, ret=%d\n", __func__, ret);
return HDF_FAILURE;
}
}
return HDF_SUCCESS;
}
...
static int32_t UsbAllocNotifyRequest(struct AcmDevice *acm)
{
struct UsbRawFillRequestData fillRequestData;
uint32_t size = acm->notifyEp->maxPacketSize;
int32_t ret;
// 分配一个具有指定数目的同步传输分组描述符的传输请求
acm->notifyReq = UsbRawAllocRequest(acm->devHandle, 0, size);
if (!acm->notifyReq) {
HDF_LOGE("notifyReq request fail\n");
return HDF_ERR_MALLOC_FAIL;
}
fillRequestData.endPoint = acm->notifyEp->addr;
fillRequestData.length = size;
fillRequestData.numIsoPackets = 0;
fillRequestData.callback = AcmNotifyReqCallback;
fillRequestData.userData = (void *)acm;
fillRequestData.timeout = USB_CTRL_SET_TIMEOUT;
// 在中断传输请求中填充所需的信息
ret = UsbRawFillInterruptRequest(acm->notifyReq, acm->devHandle, &fillRequestData);
if (ret) {
HDF_LOGE("%s: FillInterruptRequest failed, ret=%d", __func__, ret);
return HDF_FAILURE;
}
return HDF_SUCCESS;
}
...
static int32_t UsbSerialInit(struct AcmDevice *acm)
{
struct UsbSession *session = NULL;
UsbRawHandle *devHandle = NULL;
int32_t ret;
if (acm->initFlag) {
HDF_LOGE("%s:%d: initFlag is true", __func__, __LINE__);
return HDF_SUCCESS;
}
// 以专家模式初始化USB DDK
ret = UsbRawInit(NULL);
if (ret) {
HDF_LOGE("%s:%d UsbRawInit failed", __func__, __LINE__);
return HDF_ERR_IO;
}
acm->session = session;
// 打开一个USB设备对象
devHandle = UsbRawOpenDevice(session, acm->busNum, acm->devAddr);
if (devHandle == NULL) {
HDF_LOGE("%s:%d UsbRawOpenDevice failed", __func__, __LINE__);
ret = HDF_FAILURE;
goto ERR_OPEN_DEVICE;
}
acm->devHandle = devHandle;
// 获取主用设备配置、设备指针及配置描述符
ret = UsbGetConfigDescriptor(devHandle, &acm->config);
if (ret) {
HDF_LOGE("%s:%d UsbGetConfigDescriptor failed", __func__, __LINE__);
ret = HDF_FAILURE;
goto ERR_GET_DESC;
}
ret = UsbParseConfigDescriptor(acm, acm->config);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s:%d UsbParseConfigDescriptor failed", __func__, __LINE__);
ret = HDF_FAILURE;
goto ERR_PARSE_DESC;
}
ret = AcmWriteBufAlloc(acm);
if (ret < 0) {
HDF_LOGE("%s:%d AcmWriteBufAlloc failed", __func__, __LINE__);
ret = HDF_FAILURE;
goto ERR_ALLOC_WRITE_BUF;
}
ret = UsbAllocWriteRequests(acm);
if (ret < 0) {
HDF_LOGE("%s:%d UsbAllocWriteRequests failed", __func__, __LINE__);
ret = HDF_FAILURE;
goto ERR_ALLOC_WRITE_REQS;
}
ret = UsbAllocNotifyRequest(acm);
if (ret) {
HDF_LOGE("%s:%d UsbAllocNotifyRequests failed", __func__, __LINE__);
goto ERR_ALLOC_NOTIFY_REQ;
}
ret = UsbAllocReadRequests(acm);
if (ret) {
HDF_LOGE("%s:%d UsbAllocReadRequests failed", __func__, __LINE__);
goto ERR_ALLOC_READ_REQS;
}
ret = UsbStartIo(acm);
if (ret) {
HDF_LOGE("%s:%d UsbAllocReadRequests failed", __func__, __LINE__);
goto ERR_START_IO;
}
acm->lineCoding.dwDTERate = CPU_TO_LE32(DATARATE);
acm->lineCoding.bCharFormat = USB_CDC_1_STOP_BITS;
acm->lineCoding.bParityType = USB_CDC_NO_PARITY;
acm->lineCoding.bDataBits = DATA_BITS_LENGTH;
ret = UsbRawSubmitRequest(acm->notifyReq);
if (ret) {
HDF_LOGE("%s:%d UsbRawSubmitRequest failed", __func__, __LINE__);
goto ERR_SUBMIT_REQ;
}
acm->initFlag = true;
HDF_LOGD("%s:%d=========================OK", __func__, __LINE__);
return HDF_SUCCESS;
ERR_SUBMIT_REQ:
UsbStopIo(acm); // 停止IO线程并释放所有资源
ERR_START_IO:
UsbFreeReadRequests(acm);
ERR_ALLOC_READ_REQS:
UsbFreeNotifyReqeust(acm);
ERR_ALLOC_NOTIFY_REQ:
UsbFreeWriteRequests(acm);
ERR_ALLOC_WRITE_REQS:
AcmWriteBufFree(acm);
ERR_ALLOC_WRITE_BUF:
UsbReleaseInterfaces(acm);
ERR_PARSE_DESC:
UsbRawFreeConfigDescriptor(acm->config);
acm->config = NULL;
ERR_GET_DESC:
(void)UsbRawCloseDevice(devHandle); // 关闭USB设备对象
ERR_OPEN_DEVICE:
UsbRawExit(acm->session); // 退出USB DDK的专家模式
return ret;
}
...
static void UsbSerialRelease(struct AcmDevice *acm)
{
if (!(acm->initFlag)) {
HDF_LOGE("%s:%d: initFlag is false", __func__, __LINE__);
return;
}
/* stop io thread and release all resources */
UsbStopIo(acm);
if (g_syncRequest != NULL) {
UsbRawFreeRequest(g_syncRequest);
g_syncRequest = NULL;
}
UsbFreeReadRequests(acm);
UsbFreeNotifyReqeust(acm);
UsbFreeWriteRequests(acm);
AcmWriteBufFree(acm);
UsbReleaseInterfaces(acm);
(void)UsbRawCloseDevice(acm->devHandle);
UsbRawFreeConfigDescriptor(acm->config);
acm->config = NULL;
// 退出USB DDK的专家模式
UsbRawExit(acm->session);
acm->initFlag = false;
}
static int32_t UsbSerialDriverInit(struct HdfDeviceObject *device)
{
struct AcmDevice *acm = NULL;
int32_t ret;
if (device == NULL) {
HDF_LOGE("%s:%d device is null", __func__, __LINE__);
return HDF_ERR_INVALID_OBJECT;
}
acm = (struct AcmDevice *)device->service;
if (acm == NULL) {
return HDF_ERR_INVALID_OBJECT;
}
OsalMutexInit(&acm->readLock);
OsalMutexInit(&acm->writeLock);
// 设备申请连续的内存
ret = UsbSerialDeviceAlloc(acm);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s:%d UsbSerialDeviceAlloc failed", __func__, __LINE__);
}
acm->initFlag = false;
g_rawAcmReleaseFlag = false;
HDF_LOGD("%s:%d init ok!", __func__, __LINE__);
return ret;
}
static void UsbSerialDriverRelease(struct HdfDeviceObject *device)
{
struct AcmDevice *acm = NULL;
if (device == NULL) {
HDF_LOGE("%s: device is null", __func__);
return;
}
acm = (struct AcmDevice *)device->service;
if (acm == NULL) {
HDF_LOGE("%s: acm is null", __func__);
return;
}
g_rawAcmReleaseFlag = true;
if (acm->initFlag) {
HDF_LOGE("%s:%d UsbSerialRelease", __func__, __LINE__);
UsbSerialRelease(acm);
}
UsbSeriaDevicelFree(acm);
OsalMutexDestroy(&acm->writeLock);
OsalMutexDestroy(&acm->readLock);
OsalMutexDestroy(&acm->lock);
OsalMemFree(acm);
acm = NULL;
HDF_LOGD("%s:%d exit", __func__, __LINE__);
}
struct HdfDriverEntry g_usbSerialRawDriverEntry = {
.moduleVersion = 1,
.moduleName = "usbhost_acm_rawapi", // 驱动模块名称,必须与hcs文件中配置的名称一致
.Bind = UsbSerialDriverBind,
.Init = UsbSerialDriverInit,
.Release = UsbSerialDriverRelease,
};
HDF_INIT(g_usbSerialRawDriverEntry);
Device DDK API驱动开辟
USB ACM设备焦点代码路径为drivers\peripheral\usb\gadget\function\acm\cdcacm.c。其使用示比方下所示,起首根据描述符创建立备,然后获取接口,打开接口,获取Pipe信息,接收Event事件,接着进行USB通信(读写等),设备卸载时候,关闭接口,停止Event接收,删除设备。
[*] 创建立备。
static int32_t AcmCreateFuncDevice(struct UsbAcmDevice *acm, struct DeviceResourceIface *iface)
{
int32_t ret;
struct UsbFnDevice *fnDev = NULL;
// 读取hcs文件中的udc_name节点的字符串值
if (iface->GetString(acm->device->property, "udc_name", (const char **)&acm->udcName, UDC_NAME) != HDF_SUCCESS) {
HDF_LOGE("%s: read udc_name failed, use default", __func__);
return HDF_FAILURE;
}
fnDev = (struct UsbFnDevice *)UsbFnGetDevice(acm->udcName);
if (fnDev == NULL) {
HDF_LOGE("%s: create usb function device failed", __func__);
return HDF_FAILURE;
}
// 解析acm每一个Iface
ret = AcmParseEachIface(acm, fnDev);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: get pipes failed", __func__);
return HDF_FAILURE;
}
acm->fnDev = fnDev;
return HDF_SUCCESS;
}
[*] 获取接口,打开接口,获取Pipe信息
static int32_t AcmParseEachPipe(struct UsbAcmDevice *acm, struct UsbAcmInterface *iface)
{
struct UsbFnInterface *fnIface = iface->fn;
for (uint32_t i = 0; i < fnIface->info.numPipes; i++) {
struct UsbFnPipeInfo pipeInfo;
// pipeInfo清除缓存区内容
(void)memset_s(&pipeInfo, sizeof(pipeInfo), 0, sizeof(pipeInfo));
/* 获取pipe信息 */
int32_t ret = UsbFnGetInterfacePipeInfo(fnIface, i, &pipeInfo);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: get pipe info error", __func__);
return ret;
}
// PIPE的中断和管脚
switch (pipeInfo.type) {
case USB_PIPE_TYPE_INTERRUPT:
acm->notifyPipe.id = pipeInfo.id;
acm->notifyPipe.maxPacketSize = pipeInfo.maxPacketSize;
acm->ctrlIface = *iface;
break;
case USB_PIPE_TYPE_BULK:
if (pipeInfo.dir == USB_PIPE_DIRECTION_IN) {
acm->dataInPipe.id = pipeInfo.id;
acm->dataInPipe.maxPacketSize = pipeInfo.maxPacketSize;
acm->dataIface = *iface;
} else {
acm->dataOutPipe.id = pipeInfo.id;
acm->dataOutPipe.maxPacketSize = pipeInfo.maxPacketSize;
}
break;
default:
HDF_LOGE("%s: pipe type %d don't support", __func__, pipeInfo.type);
break;
}
}
return HDF_SUCCESS;
}
/* 获取接口,打开接口获取handle */
static int32_t AcmParseEachIface(struct UsbAcmDevice *acm, struct UsbFnDevice *fnDev)
{
struct UsbFnInterface *fnIface = NULL;
uint32_t i;
if (fnDev == NULL) {
return HDF_FAILURE;
}
for (i = 0; i < fnDev->numInterfaces; i++) {
fnIface = (struct UsbFnInterface *)UsbFnGetInterface(fnDev, i);
if (fnIface == NULL) {
HDF_LOGE("%s: get interface failed", __func__);
return HDF_FAILURE;
}
if (fnIface->info.subclass == USB_DDK_CDC_SUBCLASS_ACM) {
(void)AcmParseAcmIface(acm, fnIface);
fnIface = (struct UsbFnInterface *)UsbFnGetInterface(fnDev, i + 1);
if (fnIface == NULL) {
HDF_LOGE("%s: get interface failed", __func__);
return HDF_FAILURE;
}
(void)AcmParseAcmIface(acm, fnIface);
return HDF_SUCCESS;
}
}
return HDF_FAILURE;
}
[*] 接收Event事件(EP0控制传输)
static int32_t AcmAllocCtrlRequests(struct UsbAcmDevice *acm, int32_t num)
{
struct DListHead *head = &acm->ctrlPool;
struct UsbFnRequest *req = NULL;
struct CtrlInfo *ctrlInfo = NULL;
int32_t i;
DListHeadInit(&acm->ctrlPool);
acm->ctrlReqNum = 0;
for (i = 0; i < num; i++) {
// 申请内存
ctrlInfo = (struct CtrlInfo *)OsalMemCalloc(sizeof(*ctrlInfo));
if (ctrlInfo == NULL) {
HDF_LOGE("%s: Allocate ctrlInfo failed", __func__);
goto OUT;
}
ctrlInfo->acm = acm;
req = UsbFnAllocCtrlRequest(
acm->ctrlIface.handle, sizeof(struct UsbCdcLineCoding) + sizeof(struct UsbCdcLineCoding));
if (req == NULL) {
goto OUT;
}
req->complete = AcmCtrlComplete;
req->context = ctrlInfo;
DListInsertTail(&req->list, head);
acm->ctrlReqNum++;
}
return HDF_SUCCESS;
OUT:
return DListIsEmpty(head) ? HDF_FAILURE : HDF_SUCCESS;
}
[*] 进行USB通信(读写等)
static int32_t AcmSendNotifyRequest(
struct UsbAcmDevice *acm, uint8_t type, uint16_t value, const void *data, uint32_t length)
{
struct UsbFnRequest *req = acm->notifyReq;
struct UsbCdcNotification *notify = NULL;
int32_t ret;
if (req == NULL || req->buf == NULL) {
HDF_LOGE("%s: req is null", __func__);
return HDF_FAILURE;
}
acm->notifyReq = NULL;
acm->pending = false;
req->length = sizeof(*notify) + length;
notify = (struct UsbCdcNotification *)req->buf;
notify->bmRequestType = USB_DDK_DIR_IN | USB_DDK_TYPE_CLASS | USB_DDK_RECIP_INTERFACE;
notify->bNotificationType = type;
notify->wValue = CPU_TO_LE16(value);
notify->wIndex = CPU_TO_LE16(acm->ctrlIface.fn->info.index);
notify->wLength = CPU_TO_LE16(length);
ret = memcpy_s((void *)(notify + 1), length, data, length);
if (ret != EOK) {
HDF_LOGE("%s: memcpy_s failed", __func__);
return HDF_FAILURE;
}
ret = UsbFnSubmitRequestAsync(req);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: send notify request failed", __func__);
acm->notifyReq = req;
}
return ret;
}
[*] 关闭接口,停止Event接收,删除设备
static int32_t AcmReleaseFuncDevice(struct UsbAcmDevice *acm)
{
int32_t ret;
/* 关闭接口 */
(void)UsbFnInterfaceClose(acm->ctrlIface.handle);
(void)UsbFnInterfaceClose(acm->dataIface.handle);
/* 停止接收Event EP0控制传输 */
(void)UsbFnInterfaceStopRecvEvent(acm->ctrlIface.fn);
/* 删除设备 */
ret = UsbFnDeviceRemove(acm->fnDev);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: remove usb function device failed", __func__);
}
return ret;
}
static int32_t AcmReleaseFuncDevice(struct UsbAcmDevice *acm)
{
int32_t ret = HDF_SUCCESS;
if (acm->fnDev == NULL) {
HDF_LOGE("%s: fnDev is null", __func__);
return HDF_FAILURE;
}
//释放通知请求
AcmFreeCtrlRequests(acm);
AcmFreeNotifyRequest(acm);
/* 停止接收Event EP0控制传输 */
(void)UsbFnCloseInterface(acm->ctrlIface.handle);
(void)UsbFnCloseInterface(acm->dataIface.handle);
(void)UsbFnStopRecvInterfaceEvent(acm->ctrlIface.fn);
return ret;
}
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
页:
[1]