IT评测·应用市场-qidao123.com技术社区
标题:
python 回溯算法(Backtracking)
[打印本页]
作者:
老婆出轨
时间:
2025-1-4 16:11
标题:
python 回溯算法(Backtracking)
回溯算法(Backtracking)是一种通过试错的方式寻找问题的解的算法设计方法。它通常用于办理组合问题,通过递归地实验所有可能的解,并在发现当前路径不可能得到解时回退(回溯)。以下是使用Python实现回溯算法办理几个经典问题的示例:
1. 八皇后问题(N-Queens Problem)
八皇后问题要求在 ( N \times N ) 的棋盘上放置 ( N ) 个皇后,使得它们互不攻击。
def solve_n_queens(n):
def is_safe(board, row, col):
# 检查列是否有冲突
for i in range(row):
if board[i] == col:
return False
# 检查对角线是否有冲突
if abs(board[i] - col) == abs(i - row):
return False
return True
def backtrack(row):
if row == n:
solutions.append(board[:])
return
for col in range(n):
if is_safe(board, row, col):
board[row] = col
backtrack(row + 1)
board[row] = -1 # 回溯
solutions = []
board = [-1] * n # 初始化棋盘
backtrack(0)
return solutions
# 示例
n = 4
solutions = solve_n_queens(n)
for solution in solutions:
print(solution)
# 输出:
# [1, 3, 0, 2]
# [2, 0, 3, 1]
复制代码
2. 数独求解(Sudoku Solver)
数独求解问题要求添补一个 ( 9 \times 9 ) 的数独网格,使得每行、每列和每个 ( 3 \times 3 ) 子网格都包罗数字 1 到 9。
def solve_sudoku(board):
def is_valid(row, col, num):
# 检查行和列
for i in range(9):
if board[row][i] == num or board[i][col] == num:
return False
# 检查 3x3 子网格
start_row, start_col = 3 * (row // 3), 3 * (col // 3)
for i in range(3):
for j in range(3):
if board[start_row + i][start_col + j] == num:
return False
return True
def backtrack():
for row in range(9):
for col in range(9):
if board[row][col] == 0: # 找到空白格
for num in range(1, 10):
if is_valid(row, col, num):
board[row][col] = num
if backtrack():
return True
board[row][col] = 0 # 回溯
return False
return True
backtrack()
# 示例
board = [
[5, 3, 0, 0, 7, 0, 0, 0, 0],
[6, 0, 0, 1, 9, 5, 0, 0, 0],
[0, 9, 8, 0, 0, 0, 0, 6, 0],
[8, 0, 0, 0, 6, 0, 0, 0, 3],
[4, 0, 0, 8, 0, 3, 0, 0, 1],
[7, 0, 0, 0, 2, 0, 0, 0, 0],
[0, 6, 0, 0, 0, 0, 2, 8, 0],
[0, 0, 0, 4, 1, 9, 0, 0, 5],
[0, 0, 0, 0, 8, 0, 0, 7, 9]
]
solve_sudoku(board)
for row in board:
print(row)
# 输出:
# [5, 3, 4, 6, 7, 8, 9, 1, 2]
# [6, 7, 2, 1, 9, 5, 3, 4, 8]
# [1, 9, 8, 3, 4, 2, 5, 6, 7]
# [8, 5, 9, 7, 6, 1, 4, 2, 3]
# [4, 2, 6, 8, 5, 3, 7, 9, 1]
# [7, 1, 3, 9, 2, 4, 8, 5, 6]
# [9, 6, 1, 5, 3, 7, 2, 8, 4]
# [2, 8, 7, 4, 1, 9, 6, 3, 5]
# [3, 4, 5, 2, 8, 6, 1, 7, 9]
复制代码
3. 子集生成(Subset Generation)
生成一个聚集的所有子集。
def subsets(nums):
def backtrack(start, path):
result.append(path[:])
for i in range(start, len(nums)):
path.append(nums[i])
backtrack(i + 1, path)
path.pop() # 回溯
result = []
backtrack(0, [])
return result
# 示例
nums = [1, 2, 3]
print(subsets(nums))
# 输出: [[], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3]]
复制代码
4. 分列组合(Permutations and Combinations)
生成一个聚集的所有分列或组合。
分列(Permutations)
def permutations(nums):
def backtrack(path):
if len(path) == len(nums):
result.append(path[:])
return
for num in nums:
if num not in path:
path.append(num)
backtrack(path)
path.pop() # 回溯
result = []
backtrack([])
return result
# 示例
nums = [1, 2, 3]
print(permutations(nums))
# 输出: [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
复制代码
组合(Combinations)
def combinations(nums, k):
def backtrack(start, path):
if len(path) == k:
result.append(path[:])
return
for i in range(start, len(nums)):
path.append(nums[i])
backtrack(i + 1, path)
path.pop() # 回溯
result = []
backtrack(0, [])
return result
# 示例
nums = [1, 2, 3, 4]
k = 2
print(combinations(nums, k))
# 输出: [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
复制代码
总结
回溯算法通过递归地实验所有可能的解,并在发现当前路径不可能得到解时回退。它实用于组合问题、分列问题、搜索问题等。通过公道地剪枝和回溯,可以高效地找到问题的解。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
欢迎光临 IT评测·应用市场-qidao123.com技术社区 (https://dis.qidao123.com/)
Powered by Discuz! X3.4