ToB企服应用市场:ToB评测及商务社交产业平台

标题: (盘算机毕设选题推荐)基于Hadoop的网盘系统的设计与实现 [打印本页]

作者: 曹旭辉    时间: 6 天前
标题: (盘算机毕设选题推荐)基于Hadoop的网盘系统的设计与实现
择要

本文设计并实现了一个基于Hadoop的网盘系统,旨在利用Hadoop分布式盘算框架的强大数据处置惩罚本领和高可扩展性,办理传统网盘系统在面临海量数据存储与访问时面临的性能瓶颈题目。该系统通过构建分布式文件系统HDFS作为存储后端,团结MapReduce模子优化数据读写效率,同时采取YARN举行资源管理和使命调度,以实现高效、可靠的海量数据管理与共享服务。本文详细论述了系统的架构设计、关键技术选型、功能模块实现以及性能测试与分析,验证了基于Hadoop的网盘系统在处置惩罚大规模数据集时的上风。
关键字: Hadoop, 分布式存储, HDFS, MapReduce, YARN, 网盘系统, 数据挖掘, 高性能盘算, 可扩展性, 云盘算
Abstract

This paper presents the design and implementation of a cloud disk system based on Hadoop, which aims to leverage the powerful data processing capabilities and high scalability of Hadoop's distributed computing framework to address the performance bottlenecks faced by traditional cloud disk systems when dealing with massive data storage and access. The system utilizes Hadoop Distributed File System (HDFS) as the storage backend, combines the MapReduce model to optimize data read-write efficiency, and employs YARN for resource management and task scheduling, thereby achieving efficient and reliable management and sharing of massive data sets. This paper elaborates on the system's architecture design, key technology selection, functional module implementation, as well as performance testing and analysis, validating the advantages of the Hadoop-based cloud disk system in processing large-scale data sets.
Keywords: Hadoop, Distributed Storage, HDFS, MapReduce, YARN, Cloud Disk System, Data Mining, High-Performance Computing, Scalability, Cloud Computing
目次

第一章 引言

第二章 相干技术基础

第三章 系统需求分析

第四章 系统设计

第五章 系统实现

第六章 系统测试与性能分析

第七章 总结与预测

参考文献
4. 参考文献(示例,10篇中文论文)

部分成果展示

接洽我们

如果需要相干论文或者源码可以添加VX接洽我们哦~
专注盘算机毕设多年的工作室~

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。




欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/) Powered by Discuz! X3.4