IT评测·应用市场-qidao123.com
标题:
Mac M4 安装RAGFlow+ollama本地大模型踩坑经历
[打印本页]
作者:
南飓风
时间:
2025-3-8 02:10
标题:
Mac M4 安装RAGFlow+ollama本地大模型踩坑经历
修改 Docker 配置文件添加镜像源地址
为了使 Docker 利用更快捷的镜像仓库服务,可以通过编辑 /etc/docker/daemon.json 文件实现。此文件用于指定一系列可信托的镜像服务器作为署理。
安装ragflow:
安装操作如下(https://github.com/infiniflow/ragflow/issues/5012)
git clone <https://github.com/infiniflow/ragflow.git>
cd ragflow/
pip3 install huggingface_hub nltk
python3 download_deps.py
复制代码
在python3 download_deps.py步遇到huggingface_hub.errors.LocalEntryNotFoundError,由于国内IP无法登录Huggingface导致。
办理方法:
pip install -U huggingface_hub hf_transfer -i <https://pypi.tuna.tsinghua.edu.cn/simple>
export HF_ENDPOINT=https://hf-mirror.com
#重新运行python3 download_deps.py即可
复制代码
若docker build 过程中出现
ERROR: failed to solve: ubuntu:22.04: failed to resolve source metadata for docker.io/library/ubuntu:22.04: failed commit on ref "unknown-sha256:…": failed size validation: 7611 != 7283: failed precondition
复制代码
有大概是版本冲突导致,可以利用以下代码清理docker cache
# Ensure You Have the Latest Version of Docker
#Remove Unused Data:
docker system prune -a
docker builder prune
# Force a Manual Pull of the Base Image
docker pull --platform linux/arm64 ubuntu:22.04
docker pull --platform linux/amd64 ubuntu:22.04
复制代码
docker build -f Dockerfile.deps -t infiniflow/ragflow_deps .
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
# Edit .env before run this
docker compose -f docker/docker-compose-macos.yml up -d
复制代码
出现es01运行不起来反复开启关闭,修改 service.environment in docker/docker-compose-base.yml :
environment:
- node.name=es01
- ELASTIC_PASSWORD=${ELASTIC_PASSWORD}
- bootstrap.memory_lock=false
- discovery.type=single-node
- xpack.security.enabled=true
- xpack.security.http.ssl.enabled=false
- xpack.security.transport.ssl.enabled=false
- cluster.routing.allocation.disk.watermark.low=5gb
- cluster.routing.allocation.disk.watermark.high=3gb
- cluster.routing.allocation.disk.watermark.flood_stage=2gb
- TZ=${TIMEZONE}
- "ES_JAVA_OPTS=-XX:UseSVE=0"
- "CLI_JAVA_OPTS=-XX:UseSVE=0"
复制代码
链接RAGFLOW与Ollama
修改ollama host,确保可以访问: launchctl setenv OLLAMA_HOST "0.0.0.0:11434”,然后重启重新运行ollama
浏览器浏览网址https://localhost:80 打开ragflow界面注册
点击model provider,链接ragflow和ollama,也可以通过API接口毗连sliconflow
配置系统模型
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
欢迎光临 IT评测·应用市场-qidao123.com (https://dis.qidao123.com/)
Powered by Discuz! X3.4