ToB企服应用市场:ToB评测及商务社交产业平台

标题: 用Python实现BP神经网络(附代码) [打印本页]

作者: 惊落一身雪    时间: 2022-6-25 12:09
标题: 用Python实现BP神经网络(附代码)
用Python实现BP神经网络(附代码)

 大家好 我是毕加锁(锁!)
今天教大家用Python实现BP神经网络(附代码)
用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。
BP神经网络
神经网络model
先介绍个三层的神经网络,如下图所示
输入层(input layer)有三个units(

为补上的bias,通常设为1)

表示第j层的第i个激励,也称为为单元unit

为第j层到第j+1层映射的权重矩阵,就是每条边的权重

所以可以得到:
隐含层:



输出层


其中,S型函数

,也成为激励函数
可以看出

为3x4的矩阵,

为1x4的矩阵

==》j+1的单元数x(j层的单元数+1)
代价函数
假设最后输出的

,即代表输出层有K个单元


其中,

代表第i个单元输出与逻辑回归的代价函数

差不多,就是累加上每个输出(共有K个输出)
正则化
L-->所有层的个数

-->第l层unit的个数
正则化后的代价函数为


共有L-1层,然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)
正则化后的代价函数实现代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# 代价函数

def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0] # theta的中长度

# 还原theta1和theta2

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

# np.savetxt("Theta1.csv",Theta1,delimiter=',')

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

# 正则化向theta^2

term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''代价'''

J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/m

return np.ravel(J)
反向传播BP
上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度
BP反向传播的目的就是求代价函数的梯度
假设4层的神经网络,

记为-->l层第j个单元的误差

《===》

(向量化)


没有

,因为对于输入没有误差
因为S型函数

的倒数为:


所以上面的



可以在前向传播中计算出来
反向传播计算梯度的过程为:



是大写的


for i=1-m:-

-正向传播计算

(l=2,3,4...L)
-反向计算



...


-

-


最后

,即得到代价函数的梯度
实现代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# 梯度

def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):

length = nn_params.shape[0]

Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)

Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)

m = X.shape[0]

class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系

# 映射y

for i in range(num_labels):

class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值

'''去掉theta1和theta2的第一列,因为正则化时从1开始'''

Theta1_colCount = Theta1.shape[1]

Theta1_x = Theta1[:,1:Theta1_colCount]

Theta2_colCount = Theta2.shape[1]

Theta2_x = Theta2[:,1:Theta2_colCount]

Theta1_grad = np.zeros((Theta1.shape)) #第一层到第二层的权重

Theta2_grad = np.zeros((Theta2.shape)) #第二层到第三层的权重

Theta1[:,0] = 0;

Theta2[:,0] = 0;

'''正向传播,每次需要补上一列1的偏置bias'''

a1 = np.hstack((np.ones((m,1)),X))

z2 = np.dot(a1,np.transpose(Theta1))

a2 = sigmoid(z2)

a2 = np.hstack((np.ones((m,1)),a2))

z3 = np.dot(a2,np.transpose(Theta2))

h = sigmoid(z3)

'''反向传播,delta为误差,'''

delta3 = np.zeros((m,num_labels))

delta2 = np.zeros((m,hidden_layer_size))

for i in range(m):

delta3[i,:] = h[i,:]-class_y[i,:]

Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))

delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])

Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))

'''梯度'''

grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/m

return np.ravel(grad)
BP可以求梯度的原因
实际是利用了链式求导法则
因为下一层的单元利用上一层的单元作为输入进行计算
大体的推导过程如下,最终我们是想预测函数与已知的y非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。

                                             字比较草 勿喷
求误差更详细的推导过程:

梯度检查
检查利用BP求的梯度是否正确
利用导数的定义验证:

求出来的数值梯度应该与BP求出的梯度非常接近
验证BP正确后就不需要再执行验证梯度的算法了
实现代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# 检验梯度是否计算正确

# 检验梯度是否计算正确

def checkGradient(Lambda = 0):

'''构造一个小型的神经网络验证,因为数值法计算梯度很浪费时间,而且验证正确后之后就不再需要验证了'''

input_layer_size = 3

hidden_layer_size = 5

num_labels = 3

m = 5

initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size);

initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)

X = debugInitializeWeights(input_layer_size-1,m)

y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化y

y = y.reshape(-1,1)

nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta

'''BP求出梯度'''

grad = nnGradient(nn_params, input_layer_size, hidden_layer_size,

num_labels, X, y, Lambda)

'''使用数值法计算梯度'''

num_grad = np.zeros((nn_params.shape[0]))

step = np.zeros((nn_params.shape[0]))

e = 1e-4

for i in range(nn_params.shape[0]):

step = e

loss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size,

num_labels, X, y,

Lambda)

num_grad = (loss2-loss1)/(2*e)

step=0

# 显示两列比较

res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))

print res
权重的随机初始化
神经网络不能像逻辑回归那样初始化theta为0,因为若是每条边的权重都为0,每个神经元都是相同的输出,在反向传播中也会得到同样的梯度,最终只会预测一种结果。
所以应该初始化为接近0的数
实现代码
1
2
3
4
5
6
7
8
9
10
11
# 随机初始化权重theta

def randInitializeWeights(L_in,L_out):

W = np.zeros((L_out,1+L_in)) # 对应theta的权重

epsilon_init = (6.0/(L_out+L_in))**0.5

W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)产生L_out*(1+L_in)大小的随机矩阵

return W
预测
正向传播预测结果
实现代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# 预测

def predict(Theta1,Theta2,X):

m = X.shape[0]

num_labels = Theta2.shape[0]

#p = np.zeros((m,1))

'''正向传播,预测结果'''

X = np.hstack((np.ones((m,1)),X))

h1 = sigmoid(np.dot(X,np.transpose(Theta1)))

h1 = np.hstack((np.ones((m,1)),h1))

h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))

'''

返回h中每一行最大值所在的列号

- np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)

- 最后where找到的最大概率所在的列号(列号即是对应的数字)

'''

#np.savetxt("h2.csv",h2,delimiter=',')

p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))

for i in np.arange(1, m):

t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)))

p = np.vstack((p,t))

return p
输出结果
梯度检查:

随机显示100个手写数字

显示theta1权重

训练集预测准确度

归一化后训练集预测准确度

 我是毕加锁 期待你的关注

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!




欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/) Powered by Discuz! X3.4