IT评测·应用市场-qidao123.com
标题:
Datawhale 组队学习 camel-agents task1 notes: camel agent framework dem
[打印本页]
作者:
鼠扑
时间:
2025-3-12 12:19
标题:
Datawhale 组队学习 camel-agents task1 notes: camel agent framework dem
datawhale 教程
modelscope
poetry 换源
环境:
kubuntu
poetry
python3.10
camel
任务:
跑通 camel demo
demo code
from camel.agents import ChatAgent
from camel.models import ModelFactory
from camel.types import ModelPlatformType
from dotenv import load_dotenv
import os
load_dotenv()
api_key = os.getenv('QWEN_API_KEY')
model = ModelFactory.create(
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
model_type="Qwen/Qwen2.5-72B-Instruct",
url='https://api-inference.modelscope.cn/v1/',
api_key=api_key
)
agent = ChatAgent(
model=model,
output_language='中文'
)
response = agent.step("你好,你是谁?")
print(response.msgs[0].content)
复制代码
from colorama import Fore
from camel.societies import RolePlaying
from camel.utils import print_text_animated
from camel.models import ModelFactory
from camel.types import ModelPlatformType
from dotenv import load_dotenv
import os
load_dotenv(dotenv_path='.env')
api_key = os.getenv('QWEN_API_KEY')
model = ModelFactory.create(
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
model_type="Qwen/Qwen2.5-72B-Instruct",
url='https://api-inference.modelscope.cn/v1/',
api_key=api_key
)
def main(model=model, chat_turn_limit=50) -> None:
task_prompt = "为股票市场开发一个交易机器人"#设置任务目标
role_play_session = RolePlaying(
assistant_role_name="Python 程序员",#设置AI助手角色名
assistant_agent_kwargs=dict(model=model),
user_role_name="股票交易员",#设置用户角色名,在roleplay中,user用于指导AI助手完成任务
user_agent_kwargs=dict(model=model),
task_prompt=task_prompt,
with_task_specify=True,
task_specify_agent_kwargs=dict(model=model),
output_language='中文'#设置输出语言
)
print(
Fore.GREEN
+ f"AI 助手系统消息:\n{role_play_session.assistant_sys_msg}\n"
)
print(
Fore.BLUE + f"AI 用户系统消息:\n{role_play_session.user_sys_msg}\n"
)
print(Fore.YELLOW + f"原始任务提示:\n{task_prompt}\n")
print(
Fore.CYAN
+ "指定的任务提示:"
+ f"\n{role_play_session.specified_task_prompt}\n"
)
print(Fore.RED + f"最终任务提示:\n{role_play_session.task_prompt}\n")
n = 0
input_msg = role_play_session.init_chat()
while n < chat_turn_limit:
n += 1
assistant_response, user_response = role_play_session.step(input_msg)
if assistant_response.terminated:
print(
Fore.GREEN
+ (
"AI 助手已终止。原因: "
f"{assistant_response.info['termination_reasons']}."
)
)
break
if user_response.terminated:
print(
Fore.GREEN
+ (
"AI 用户已终止。"
f"原因: {user_response.info['termination_reasons']}."
)
)
break
print_text_animated(
Fore.BLUE + f"AI 用户:\n\n{user_response.msg.content}\n"
)
print_text_animated(
Fore.GREEN + "AI 助手:\n\n"
f"{assistant_response.msg.content}\n"
)
if "CAMEL_TASK_DONE" in user_response.msg.content:
break
input_msg = assistant_response.msg
if __name__ == "__main__":
main()
复制代码
experience
在服务器上跑了 task1
挺顺利的
camel repo 好像还有 gradio demo 等示例
学习内容:
poetry
camel-ai 基本利用
modelscope
ark
siliconflow
平台多得很,看你怎么用
further explore
camel/examples/
https://docs.camel-ai.org/
https://github.com/camel-ai/owl
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
欢迎光临 IT评测·应用市场-qidao123.com (https://dis.qidao123.com/)
Powered by Discuz! X3.4