qidao123.com技术社区-IT企服评测·应用市场

标题: 基于共享上下文和自主协作的 R&D Agent 生态系统 [打印本页]

作者: 火影    时间: 2025-4-27 13:21
标题: 基于共享上下文和自主协作的 R&D Agent 生态系统
在llm+angent+mcp这个框架中
   
  基于 LLM+Agent+MCP (Context Protocol) 的 R&D 主动化平台
架构分层:
LLM 在各层的详细作用 (Refined):

技术栈与实现思路 (基于 MCP Service):

实现流程概念伪代码:
1. MCP (Master Context Protocol) Service (Simplified FastAPI Example)
  1. # Pseudo-code for MCP Service using FastAPI
  2. from fastapi import FastAPI, HTTPException
  3. from pydantic import BaseModel
  4. from typing import List, Dict, Any
  5. import uuid
  6. import time
  7. app = FastAPI()
  8. # In-memory storage for simplicity, replace with DB in production
  9. contexts: Dict[str, Dict[str, Any]] = {}
  10. class Message(BaseModel):
  11.     sender_id: str
  12.     sender_type: str # e.g., "agent", "human", "system"
  13.     type: str # e.g., "thought", "action", "observation", "tool_call", "tool_result", "human_input", "status_update"
  14.     content: Any
  15.     timestamp: float = Field(default_factory=time.time)
  16. class TaskContext(BaseModel):
  17.     task_id: str
  18.     created_at: float = Field(default_factory=time.time)
  19.     messages: List[Message] = [] # History of interactions
  20.     shared_state: Dict[str, Any] = {} # Key-value pairs for shared state
  21.     # Add fields for linked knowledge, relevant documents etc.
  22. @app.post("/tasks", response_model=TaskContext)
  23. def create_task(initial_goal: str):
  24.     task_id = str(uuid.uuid4())
  25.     new_context = TaskContext(task_id=task_id, shared_state={"status": "CREATED", "initial_goal": initial_goal})
  26.     contexts[task_id] = new_context.model_dump() # Store as dict for mutation
  27.     print(f"Task {task_id} created.")
  28.     return new_context
  29. @app.get("/tasks/{task_id}/context", response_model=TaskContext)
  30. def get_context(task_id: str):
  31.     if task_id not in contexts:
  32.         raise HTTPException(status_code=404, detail="Task not found")
  33.     return TaskContext(**contexts[task_id]) # Return as Pydantic model
  34. @app.post("/tasks/{task_id}/messages")
  35. def add_message(task_id: str, message: Message):
  36.     if task_id not in contexts:
  37.         raise HTTPException(status_code=404, detail="Task not found")
  38.     contexts[task_id]['messages'].append(message.model_dump())
  39.     # Optional: Trigger event notification here
  40.     print(f"Task {task_id}: Added message from {message.sender_id} ({message.type})")
  41.     return {"status": "success"}
  42. @app.put("/tasks/{task_id}/state")
  43. def update_shared_state(task_id: str, state_update: Dict[str, Any]):
  44.     if task_id not in contexts:
  45.         raise HTTPException(status_code=404, detail="Task not found")
  46.     contexts[task_id]['shared_state'].update(state_update)
  47.     # Optional: Trigger event notification if specific keys updated
  48.     print(f"Task {task_id}: Updated shared state: {state_update}")
  49.     return {"status": "success"}
  50. @app.get("/tasks/{task_id}/state", response_model=Dict[str, Any])
  51. def get_shared_state(task_id: str):
  52.      if task_id not in contexts:
  53.          raise HTTPException(status_code=404, detail="Task not found")
  54.      return contexts[task_id]['shared_state']
  55. # Run with: uvicorn mcp_service:app --reload
复制代码
2. Agent Layer: Example Agent (Literature Review Agent) - Interacting with MCP
  1. # Pseudo-code for a Literature Review Agent's internal logic (Simplified)
  2. from agent_core_base import AgentCore # Base class handles LLM, Memory, Tools
  3. from tools import SearchPubMedTool, SummarizeTextTool
  4. from mcp_client import MCPClient # Custom client for MCP Service API
  5. class LiteratureReviewAgent(AgentCore): # Inherit from base Agent class
  6.     def __init__(self, id, llm, memory, tools, mcp_client: MCPClient, task_id: str):
  7.         super().__init__(id, llm, memory, tools)
  8.         self.mcp_client = mcp_client
  9.         self.task_id = task_id # Agent is initialized for a specific task context
  10.     def run(self):
  11.         # Agent starts its execution loop
  12.         print(f"Agent {self.id}: Starting execution for task {self.task_id}")
  13.         try:
  14.             while True:
  15.                 # 1. Get current context from MCP
  16.                 context = self.mcp_client.get_context(self.task_id)
  17.                 current_history = context['messages']
  18.                 shared_state = context['shared_state']
  19.                 # Check if task is already completed or requires human intervention
  20.                 if shared_state.get('status') == 'COMPLETED' or shared_state.get('status') == 'NEEDS_HUMAN_REVIEW':
  21.                     print(f"Agent {self.id}: Task status is {shared_state.get('status')}. Exiting.")
  22.                     break # Exit loop
  23.                 # 2. LLM Reasoning based on context
  24.                 # Craft a prompt that includes the history and state from context
  25.                 prompt = self.generate_reasoning_prompt(current_history, shared_state)
  26.                 llm_response = self.llm.chat(prompt) # Assuming chat model
  27.                 thought = extract_thought_from_llm_response(llm_response) # Needs parsing
  28.                 action = extract_action_from_llm_response(llm_response) # Needs parsing (tool call or update_state)
  29.                 # 3. Log thought to MCP
  30.                 self.mcp_client.add_message(self.task_id, self.id, "thought", thought)
  31.                 if action:
  32.                     action_type = action['type']
  33.                     action_details = action['details']
  34.                     # 4. Log action to MCP
  35.                     self.mcp_client.add_message(self.task_id, self.id, "action", action)
  36.                     if action_type == "tool_call":
  37.                         tool_name = action_details['tool_name']
  38.                         tool_params = action_details['tool_params']
  39.                         print(f"Agent {self.id}: Calling tool {tool_name} with {tool_params}")
  40.                         try:
  41.                             tool_result = self.use_tool(tool_name, tool_params)
  42.                             print(f"Agent {self.id}: Tool {tool_name} returned {tool_result}")
  43.                             # 5. Log observation/tool result to MCP
  44.                             self.mcp_client.add_message(self.task_id, self.id, "observation", tool_result)
  45.                             self.mcp_client.add_message(self.task_id, self.id, "tool_result", tool_result)
  46.                             # 6. Based on result, maybe update shared state?
  47.                             if self.check_if_literature_complete(tool_result): # Agent's own logic
  48.                                  self.mcp_client.update_shared_state(self.task_id, {"literature_review_status": "COMPLETED", "literature_summary": tool_result['summary']})
  49.                                  print(f"Agent {self.id}: Literature review task completed.")
  50.                                  # Agent might choose to exit here, or LLM might decide the next step
  51.                                  # break # Example: Exit after completion
  52.                         except Exception as tool_error:
  53.                             error_msg = f"Tool {tool_name} failed: {tool_error}"
  54.                             print(error_msg)
  55.                             # 5. Log error to MCP
  56.                             self.mcp_client.add_message(self.task_id, self.id, "observation", {"error": error_msg})
  57.                             self.mcp_client.update_shared_state(self.task_id, {"status": "ERROR_IN_LIT_REVIEW", "error_details": error_msg})
  58.                             # Agent might decide to stop or seek help
  59.                             break # Example: Exit on major error
  60.                     elif action_type == "update_state":
  61.                         state_updates = action_details['updates']
  62.                         self.mcp_client.update_shared_state(self.task_id, state_updates)
  63.                         print(f"Agent {self.id}: Updated shared state with {state_updates}")
  64.                     elif action_type == "delegate": # Example: Agent decides to delegate to another agent type
  65.                          target_agent_type = action_details['agent_type']
  66.                          delegation_task = action_details['task_description']
  67.                          # Log this delegation to the context so other agents can see it
  68.                          self.mcp_client.add_message(self.task_id, self.id, "delegation", {"to_agent_type": target_agent_type, "description": delegation_task})
  69.                          # The Session Manager or another Agent might pick this up and launch the new agent
  70.                          # This requires other components monitoring the context
  71.                     elif action_type == "report_completion": # Agent signals its part is done
  72.                          final_summary = action_details['summary']
  73.                          self.mcp_client.update_shared_state(self.task_id, {"literature_review_status": "FINALIZED", "final_summary": final_summary})
  74.                          self.mcp_client.add_message(self.task_id, self.id, "status_update", {"status": "Literature review finalized"})
  75.                          print(f"Agent {self.id}: Reported finalization.")
  76.                          # break # Agent might exit after its specific sub-task is done
  77.                     # ... other action types (e.g., ask_human_for_help)
  78.                 else: # LLM didn't generate a valid action or signaled completion implicitly
  79.                     # Needs logic to detect if LLM is stuck or implicitly finished
  80.                     print(f"Agent {self.id}: LLM returned no valid action or finished.")
  81.                     # Maybe update state to signal potential stagnation or sub-task completion?
  82.                     # self.mcp_client.update_shared_state(self.task_id, {"status": "LIT_REVIEW_AGENT_STALLED"})
  83.                     break # Example: Exit loop
  84.                 time.sleep(5) # Prevent tight loop, allow other agents to potentially act
  85.         except Exception as e:
  86.             print(f"Agent {self.id} encountered fatal error: {e}")
  87.             # Log fatal error and update global state
  88.             self.mcp_client.add_message(self.task_id, self.id, "system_error", {"error": str(e)})
  89.             self.mcp_client.update_shared_state(self.task_id, {"status": "FATAL_ERROR", "error_source": self.id, "error_details": str(e)})
  90.     def generate_reasoning_prompt(self, history, shared_state):
  91.          # Craft the core prompt for the LLM, injecting relevant history and state
  92.          history_text = "\n".join([f"{msg['sender_type']} ({msg['sender_id']}) [{msg['type']}]: {msg['content']}" for msg in history])
  93.          state_text = json.dumps(shared_state, indent=2)
  94.          prompt = f"""
  95.          You are a {self.agent_type} with ID {self.id}. Your current task context (ID: {self.task_id}) is managed by the Master Context Protocol Service.
  96.          Review the task history and shared state below. Determine your next step to contribute to the overall R&D goal defined in the shared state ('initial_goal').
  97.          Your actions should be one of the following types: 'tool_call', 'update_state', 'delegate', 'report_completion', 'ask_human_for_help'.
  98.          Output your thought process first, then your chosen action in JSON format. If no action is needed now, explain why.
  99.          Current Shared State:
  100.          {state_text}
  101.          Task History:
  102.          {history_text}
  103.          Available Tools: {list(self.tools.keys())}
  104.          Think step-by-step. What is the current situation? What needs to be done next based on the goal and state? Which action is most appropriate?
  105.          """
  106.          return prompt
  107.     def check_if_literature_complete(self, tool_result):
  108.         # Agent-specific logic to determine if its sub-task is done
  109.         # E.g., check if a summary is generated, if enough papers were reviewed, etc.
  110.         pass # Placeholder
  111.     # use_tool method would be similar to previous examples, calling external services
  112.     # class AgentCoreBase would handle the LLM interaction and basic structure
复制代码
3. Task Initiator & Global State Monitor (Simplified)
  1. # Pseudo-code for Task Initiator (e.g., a simple script or service)
  2. from mcp_client import MCPClient
  3. mcp_client = MCPClient(mcp_service_url="http://mcp_service:8000") # Point to MCP Service
  4. def start_new_rnd_task(user_goal: str):
  5.     print(f"Initiating R&D task with goal: {user_goal}")
  6.     # 1. Create a new context for the task
  7.     new_context = mcp_client.create_task(user_goal)
  8.     task_id = new_context['task_id']
  9.     print(f"New task created with ID: {task_id}")
  10.     # 2. Start initial Agent(s) and provide them with the task_id
  11.     # This requires knowing which agent(s) should start based on the initial goal
  12.     # This logic could be hardcoded, rule-based, or even LLM-decided by the Initiator.
  13.     initial_agent_types = ["Literature Review Agent", "Hypothesis Generation Agent"] # Example
  14.     for agent_type in initial_agent_types:
  15.         # Assume a way to launch an agent instance (e.g., calling a Kubernetes API to create a Pod,
  16.         # or calling an Agent Management Service)
  17.         launch_agent_instance(agent_type, task_id) # This function starts the Agent process
  18.         print(f"Launched initial agent: {agent_type} for task {task_id}")
  19.     print("Initial agents launched. Monitoring task state via MCP.")
  20. # Pseudo-code for Global State Monitor (e.g., a background process or UI component)
  21. def monitor_rnd_tasks():
  22.      mcp_client = MCPClient(mcp_service_url="http://mcp_service:8000")
  23.      while True:
  24.          # 1. Get overview of tasks (e.g., list all tasks or recent ones)
  25.          tasks_overview = mcp_client.list_tasks() # Needs a list_tasks endpoint in MCP Service
  26.          for task_summary in tasks_overview:
  27.              task_id = task_summary['task_id']
  28.              current_state = mcp_client.get_shared_state(task_id)
  29.              print(f"Task {task_id}: Status - {current_state.get('status', 'N/A')}, Goal - {current_state.get('initial_goal', 'N/A')}")
  30.              # Check for specific conditions needing human attention
  31.              if current_state.get('status') == 'NEEDS_HUMAN_REVIEW':
  32.                  print(f"ALERT: Task {task_id} needs human review!")
  33.                  # Trigger notification (email, slack) and provide link to UI showing context
  34.              if current_state.get('status') == 'FATAL_ERROR':
  35.                   print(f"ALERT: Task {task_id} encountered FATAL ERROR!")
  36.                   # Trigger notification
  37.          time.sleep(60) # Check every minute
  38. # launch_agent_instance(agent_type, task_id) pseudo-code:
  39. # This function is part of the Agent Management layer, not MCP itself.
  40. # It would typically interact with Kubernetes to deploy a pod,
  41. # passing task_id and MCP Service endpoint as environment variables or arguments
  42. # so the Agent knows which context to join.
  43. def launch_agent_instance(agent_type, task_id):
  44.      # Example: Call Kubernetes API to create a Pod
  45.      k8s_client = get_kubernetes_client()
  46.      pod_manifest = {
  47.          "apiVersion": "v1",
  48.          "kind": "Pod",
  49.          "metadata": {"generateName": f"{agent_type.lower().replace(' ', '-')}-"},
  50.          "spec": {
  51.              "containers": [{
  52.                  "name": "agent",
  53.                  "image": f"your_agent_image:{agent_type.lower().replace(' ', '-')}", # Need different images or config for each type
  54.                  "env": [
  55.                      {"name": "AGENT_ID", "value": str(uuid.uuid4())},
  56.                      {"name": "AGENT_TYPE", "value": agent_type},
  57.                      {"name": "TASK_ID", "value": task_id},
  58.                      {"name": "MCP_SERVICE_URL", "value": "http://mcp_service:8000"},
  59.                      # ... other env vars for LLM endpoint, DBs, etc.
  60.                  ]
  61.              }],
  62.              "restartPolicy": "Never" # Or OnFailure depending on desired behavior
  63.          }
  64.      }
  65.      k8s_client.create_namespaced_pod("default", pod_manifest)
  66.      print(f"Requested Kubernetes to launch {agent_type} pod for task {task_id}")
复制代码
与 Dify / AutoGen 的联合:

优势 (与中心控制程序相比):

挑衅 (与中心控制程序相比):

总结:
LLM + Agent + MCP (Master Context Protocol) 模式提供了一种构建 R&D 主动化平台的可行且更具自主性的思路。核心是将共享上下文作为 Agent 协作的中心前言。MCP Service 负责管理这个共享上下文,而 Agent 则通过与 MCP Service 交互,感知环境、执行任务并影响环境。
实现的关键在于计划健壮的 MCP Service API、编写能够有用利用共享上下文进行推理和协作的 Agent Prompt 与内部逻辑、以及构建一套能够监控共享状态并适时介入的 Global State Monitor 和 Human-in-the-Loop 机制。
这个模式尤其适合需要更灵活、更接近人类团队协作模式的 R&D 任务,但对 Agent 计划的自主性和鲁棒性提出了更高的要求,并且需要解决共享上下文管理和任务收敛性等复杂问题。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。




欢迎光临 qidao123.com技术社区-IT企服评测·应用市场 (https://dis.qidao123.com/) Powered by Discuz! X3.4