qidao123.com技术社区-IT企服评测·应用市场
标题:
为什么不能用浮点型表示金额?
[打印本页]
作者:
美丽的神话
时间:
2025-4-28 07:34
标题:
为什么不能用浮点型表示金额?
扼要答复
由于存在精度丢失的风险
《阿里巴巴 Java 开发手册》
中提到:“浮点数之间的等值判断,根本数据类型不能用 == 来比力,包装数据类型不能用 equals 来判断”。“为了避免精度丢失,可以使用 BigDecimal 来进行浮点数的运算”。
浮点数的运算竟然还会有精度丢失的风险吗?确实会!
浮点数运算精度丢失代码演示:
float a = 2.0f - 1.9f;
float b = 1.8f - 1.7f;
System.out.println(a);// 0.100000024
System.out.println(b);// 0.099999905
System.out.println(a == b);// false
复制代码
为什么会出现这个问题?
这个和计算机生存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制准确表示。
就比如说十进制下的 0.2 就没办法准确转换成二进制小数:
// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...
复制代码
怎样解决浮点数运算的精度丢失问题?
BigDecimal 可以实现对浮点数的运算,不会造成精度丢失。通常情况下,大部分需要浮点数准确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal 来做的。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
BigDecimal c = new BigDecimal("0.8");
BigDecimal x = a.subtract(b);
BigDecimal y = b.subtract(c);
System.out.println(x); /* 0.1 */
System.out.println(y); /* 0.1 */
System.out.println(Objects.equals(x, y)); /* true */
复制代码
关于 BigDecimal 的详细介绍,具体可以看
这篇文章
凌驾 long 整型的数据应该怎样表示?
根本数值类型都有一个表达范围,如果凌驾这个范围就会有数值溢出的风险。
在 Java 中,64 位 long 整型是最大的整数类型。
long l = Long.MAX_VALUE;
System.out.println(l + 1); // -9223372036854775808
System.out.println(l + 1 == Long.MIN_VALUE); // true
复制代码
BigInteger 内部使用 int[] 数组来存储任意大小的整形数据。
相对于常规整数类型的运算来说,BigInteger 运算的服从会相对较低。
BigDecimal详细介绍
BigDecimal 介绍
BigDecimal 可以实现对浮点数的运算,不会造成精度丢失。
通常情况下,大部分需要浮点数准确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal 来做的。
想要解决浮点数运算精度丢失这个问题,可以直接使用 BigDecimal 来定义浮点数的值,然后再进行浮点数的运算操作即可。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
BigDecimal c = BigDecimal.valueOf(0.8);
BigDecimal x = a.subtract(b);
BigDecimal y = b.subtract(c);
System.out.println(x.compareTo(y));// 0
复制代码
BigDecimal 常见方法
创建
在使用 BigDecimal 时,为了防止精度丢失,保举使用它的BigDecimal(String val)构造方法或者 BigDecimal.valueOf(double val) 静态方法来创建对象。
《阿里巴巴 Java 开发手册》对这部分内容也有提到,如下图所示。
public static BigDecimal valueOf(double val) {
return new BigDecimal(Double.toString(val));
}
复制代码
加减乘除
add 方法:两个 BigDecimal 对象相加
subtract 方法:两个 BigDecimal 对象相减
multiply 方法:两个 BigDecimal 对象相乘
divide 方法:两个 BigDecimal 对象相除。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
System.out.println(a.add(b));// 1.9
System.out.println(a.subtract(b));// 0.1
System.out.println(a.multiply(b));// 0.90
System.out.println(a.divide(b));// 无法除尽,抛出 ArithmeticException 异常
System.out.println(a.divide(b, 2, RoundingMode.HALF_UP));// 1.11
复制代码
这里需要注意的是,在使用 divide 方法的时候尽量使用 3 个参数版本,而且RoundingMode 不要选择 UNNECESSARY,否则很可能会碰到 ArithmeticException(无法除尽出现无限循环小数的时候),此中 scale 表示要生存几位小数,roundingMode 代表生存规则。
public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
return divide(divisor, scale, roundingMode.oldMode);
}
复制代码
生存几位小数 setScale
通过 setScale方法设置生存几位小数以及生存规则。生存规则如上,不需要记,IDEA 会提示。
BigDecimal m = new BigDecimal("1.255433");
BigDecimal n = m.setScale(3, RoundingMode.HALF_DOWN);
System.out.println(n);// 1.255
复制代码
生存规则非常多,这里枚举几种:
public enum RoundingMode {
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -2 , -2.5 -> -3
UP(BigDecimal.ROUND_UP),//远离零方向舍入,无论正负
// 2.5 -> 2 , 1.6 -> 1
// -1.6 -> -1 , -2.5 -> -2
DOWN(BigDecimal.ROUND_DOWN),//向零方向舍入,直接去掉小数部分。
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -1 , -2.5 -> -2
CEILING(BigDecimal.ROUND_CEILING),//向正无穷方向舍入。
// 2.5 -> 2 , 1.6 -> 1
// -1.6 -> -2 , -2.5 -> -3
FLOOR(BigDecimal.ROUND_FLOOR),//向负无穷方向舍入。
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -2 , -2.5 -> -3
HALF_UP(BigDecimal.ROUND_HALF_UP),//四舍五入,小数部分 >= 0.5 向上,否则向下。
//......
}
复制代码
等值比力问题
《阿里巴巴 Java 开发手册》中提到:
BigDecimal 使用 equals() 方法进行等值比力出现问题的代码示例:
BigDecimal a = new BigDecimal("1");
BigDecimal b = new BigDecimal("1.0");
System.out.println(a.equals(b));//false
复制代码
这是由于BigDecimal的 equals() 方法不仅仅会比力值的大小(value)还会比力精度(scale),而 compareTo() 方法比力的时候会忽略精度。
1.0 的 scale 是 1,1 的 scale 是 0,因此 a.equals(b) 的结果是 false。
compareTo() 方法可以比力两个 BigDecimal 的值:
a.compareTo(b) : 返回 -1 表示 a 小于 b,0 表示 a 等于 b , 1 表示 a 大于 b。
BigDecimal a = new BigDecimal("1");
BigDecimal b = new BigDecimal("1.0");
System.out.println(a.compareTo(b));//0
复制代码
BigDecimal 存在的性能问题
由于其准确性和机动性,BigDecimal 在某些场景下同样可能会带来性能问题。
BigDecimal的性能问题主要源于以下几点:
内存占用:BigDecimal 对象的内存占用较大,尤其是在处理大数字时。每个 BigDecimal 实例都需要维护其精度和标度等信息,这会导致内存开销增加。
不可变性:BigDecimal 是不可变类,每次进行运算或修改值时都会生成一个新的 BigDecimal 实例。这意味着频繁的操作可能会导致大量的对象创建和垃圾回收,对性能造成肯定的影响。
运算复杂性:由于 BigDecimal 要求准确计算,它在执行加、减、乘、除等运算时会比力复杂。这些运算需要更多的计算和处理时间,相比原生的根本类型,会带来肯定的性能损耗。
性能问题验证:
@Slf4j
public class BigDecimalEfficiency {
//执行次数
public static int REPEAT_TIMES = 10000000;
// 转BigDecimal 类型计算
public static double computeByBigDecimal(double a, double b) {
BigDecimal result = BigDecimal.valueOf(0);
BigDecimal decimalA = BigDecimal.valueOf(a);
BigDecimal decimalB = BigDecimal.valueOf(b);
for (int i = 0; i < REPEAT_TIMES; i++) {
result = result.add(decimalA.multiply(decimalB));
}
return result.doubleValue();
}
// 转double 类型计算
public static double computeByDouble(double a, double b) {
double result = 0;
for (int i = 0; i < REPEAT_TIMES; i++) {
result += a * b;
}
return result;
}
public static void main(String[] args) {
long start1 = System.nanoTime();
double result1 = computeByBigDecimal(0.120001110034, 11.22);
long end1 = System.nanoTime();
long start2 = System.nanoTime();
double result2 = computeByDouble(0.120001110034, 11.22);
long end2 = System.nanoTime();
long timeUsed1 = (end1 - start1);
long timeUsed2 = (end2 - start2);
log.info("result by BigDecimal:{},time used:{}", result1, timeUsed1);
log.info("result by Double:{},time used:{}", result2, timeUsed2);
log.info("timeUsed1/timeUsed2=" + timeUsed1 / timeUsed2);
}
}
复制代码
运行结果:
性能优化策略
BigDecimal 性能问题优化策略,可以考虑以下几点优化策略:
避免频繁的对象创建:尽量复用 BigDecimal 对象,而不是每次运算都创建新的实例。可以使用 BigDecimal 的 setScale() 方法设置精度和舍入模式,而不是每次都创建新的对象。
使用原生类型替换:对于一些不需要准确计算的场景,可以使用原生类型(如 int、double、long)来进行运算,以进步性能。只在最后需要准确结果时再转换为 BigDecimal。
使用适当的缓存策略:对于频繁使用的 BigDecimal 对象,可以考虑使用缓存来避免重复创建和销毁。例如,使用对象池或缓存来管理常用的 BigDecimal 对象,以镌汰对象创建和垃圾回收的开销。
考虑并行计算:对于大规模的计算使命,可以考虑使用并行计算来进步性能。Java 8 提供了 Stream API 和并行流(parallel stream),可以方便地实现并行计算。
需要根据具体的应用场景和需求来权衡准确性和性能,选择合适的处理方式。在对性能要求较高的场景下,可以考虑使用其他更适合的数据类型或算法来替换 BigDecimal。在需要精度计算的情况下,也不能由于BigDecimal存在肯定的性能问题二选择弃用,顾此失彼。
BigDecimal 工具类分享
网上有一个使用人数比力多的 BigDecimal 工具类,提供了多个静态方法来简化 BigDecimal 的操作。源码:
public class BigDecimalUtil {
/**
* 默认除法运算精度
*/
private static final int DEF_DIV_SCALE = 10;
private BigDecimalUtil() {
}
/**
* 提供精确的加法运算。
*
* @param v1 被加数
* @param v2 加数
* @return 两个参数的和
*/
public static double add(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.add(b2).doubleValue();
}
/**
* 提供精确的减法运算。
*
* @param v1 被减数
* @param v2 减数
* @return 两个参数的差
*/
public static double subtract(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.subtract(b2).doubleValue();
}
/**
* 提供精确的乘法运算。
*
* @param v1 被乘数
* @param v2 乘数
* @return 两个参数的积
*/
public static double multiply(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.multiply(b2).doubleValue();
}
/**
* 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到小数点以后10位,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @return 两个参数的商
*/
public static double divide(double v1, double v2) {
return divide(v1, v2, DEF_DIV_SCALE);
}
/**
* 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指定精度,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @param scale 表示表示需要精确到小数点以后几位。
* @return 两个参数的商
*/
public static double divide(double v1, double v2, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.divide(b2, scale, RoundingMode.HALF_EVEN).doubleValue();
}
/**
* 提供精确的小数位四舍五入处理。
*
* @param v 需要四舍五入的数字
* @param scale 小数点后保留几位
* @return 四舍五入后的结果
*/
public static double round(double v, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b = BigDecimal.valueOf(v);
BigDecimal one = new BigDecimal("1");
return b.divide(one, scale, RoundingMode.HALF_UP).doubleValue();
}
/**
* 提供精确的类型转换(Float)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static float convertToFloat(double v) {
BigDecimal b = new BigDecimal(v);
return b.floatValue();
}
/**
* 提供精确的类型转换(Int)不进行四舍五入
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static int convertsToInt(double v) {
BigDecimal b = new BigDecimal(v);
return b.intValue();
}
/**
* 提供精确的类型转换(Long)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static long convertsToLong(double v) {
BigDecimal b = new BigDecimal(v);
return b.longValue();
}
/**
* 返回两个数中大的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中大的一个值
*/
public static double returnMax(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.max(b2).doubleValue();
}
/**
* 返回两个数中小的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中小的一个值
*/
public static double returnMin(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.min(b2).doubleValue();
}
/**
* 精确对比两个数字
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 如果两个数一样则返回0,如果第一个数比第二个数大则返回1,反之返回-1
*/
public static int compareTo(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.compareTo(b2);
}
}
复制代码
小结
浮点数没有办法用二进制准确表示,因此存在精度丢失的风险。不过,Java 提供了BigDecimal 来操作浮点数。BigDecimal 的实现使用到了 BigInteger (用来操作大整数), 所差别的是 BigDecimal 加入了小数位的概念。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
欢迎光临 qidao123.com技术社区-IT企服评测·应用市场 (https://dis.qidao123.com/)
Powered by Discuz! X3.4