为什么需要一致性 hash?
在采用分片方式建立分布式缓存时,我们面临的第一个问题是如何决定存储数据的节点。最自然的方式是参考 hash 表的做法,假设集群中存在 n 个节点,我们用 node = hashCode(key) % n 来决定所属的节点。
普通 hash 算法解决了如何选择节点的问题,但在分布式系统中经常出现增加节点或某个节点宕机的情况。若节点数 n 发生变化, 大多数 key 根据 node = hashCode(key) % n 计算出的节点都会改变。这意味着若要在 n 变化后维持系统正常运转,需要将大多数数据在节点间进行重新分布。这个操作会消耗大量的时间和带宽等资源,这在生产环境下是不可接受的。
算法原理
一致性 hash 算法的目的是在节点数量 n 变化时, 使尽可能少的 key 需要进行节点间重新分布。一致性 hash 算法将数据 key 和服务器地址 addr 散列到 2^32 的空间中。
我们将 2^32 个整数首尾相连形成一个环,首先计算服务器地址 addr 的 hash 值放置在环上。然后计算 key 的 hash 值放置在环上,顺时针查找,将数据放在找到的的第一个节点上。
在增加或删除节点时只有该节点附近的数据需要重新分布,从而解决了上述问题。
如果服务器节点较少则比较容易出现数据分布不均匀的问题,一般来说环上的节点越多数据分布越均匀。我们不需要真的增加一台服务器,只需要将实际的服务器节点映射为几个虚拟节点放在环上即可。
参考:https://www.cnblogs.com/Finley/p/14038398.html
欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/) | Powered by Discuz! X3.4 |