Hypertables(超级表) | 它将时间序列数据根据时间进行分区和组织,从而实现更高效的查询性能 |
distributed hypertable(分布式超表) | 使用空间分区,将数据分布存储在多个数据节点上 |
Chunks(块) | TimescaleDB自动将Hypertable分割成块,每个块对应于一个特定的时间间隔和一个分区键。这些分区是不重合的,这有助于查询器进行查询 |
连续聚合 | 连续聚集表是TimescaleDB的一个重要特性,它可以在后台自动维护预定义的聚合数据。通过使用连续聚集表,可以极大地提高大规模时序数据的查询性能 |
普通表 | 普通的PostgreSQL表 |
超表(Hypertables) | 超表是专门为时间序列数据设计的,一个 超级表始终按时分区,但也可以在 其他列也是如此。超表的另一个特别之处在于 它们被分解为称为块的较小表 |
分布式超表 | 分布式超表是跨多个节点的超表,分布式超表用于多节点群集。每个集群都有一个 访问节点和多个数据节点。您可以使用 访问节点,并且数据存储在数据节点上 |
物化视图 | 是一个标准的PostgreSQL函数。 它们用于缓存复杂查询的结果,以便您可以重用它 后来。实例化视图不会定期更新,但您可以手动更新 根据需要刷新它们 |
连续聚合 | 自动更新的物化视图 |
实时聚合 | 即在查询时将聚合数据和原始数据结合起来,以获得新的结果,连续聚合视图默认开启了实时聚合,如果关闭,则在查询的时候,只会查询已经物化的数据。 |
欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/) | Powered by Discuz! X3.4 |