\(1.\) 艾佛森括号:函数
\([P]=\begin{cases}1 & \mathtt{(if\ P\ is \ true)}\\0 & \mathtt{(otherwise)}\end{cases}\)
\(2.\) \(a\mid b\) 表示 \(a\) 是 \(b\) 的因子
\(3.\) 整除分块:\(\displaystyle\sum_{i=1}^n\lfloor\dfrac{N}{i}\rfloor\)
\(4.\) \(p\) 没有特殊说明时表示质数
\(5.\) \(\mathbb{P}\) 表示质数集,\(\mathbb{Z}\) 表示整数集。
\(6.\) 常见的函数:
- 常函数:\(1(x)=1\)
- 单位元函数:\(\epsilon(x)=[x=1]\)
- 恒等函数:\(Id_k(x)=x^k\)
- 因子函数:\(d(x)=\displaystyle\sum_{i\mid x}1\)
- 因子和函数:\(\sigma(x)_k=\displaystyle\sum_{i\mid x}i^k\)
- 欧拉函数:\(\varphi(x)=\displaystyle\sum_{i=1}^x[\gcd(i,x)=1]\)
证明:积性函数
我们先假设 \(n\in\mathbb{N^+}\) 只存在质因子 \(p,q\)。
考虑容斥,与 \(n\) 互质的数就是所有数减去 \(p,2p,\cdots,\lfloor\dfrac{n}{p}\rfloor,q,2q,\cdots,\lfloor\dfrac{n}{q}\rfloor\)。
同时根据容斥原理,需要补回 \(pq,2pq,\cdots,\lfloor\dfrac{n}{pq}\rfloor\)。
即 \(\varphi(n)=n-\dfrac{n}{p}-\dfrac{n}{q}+\dfrac{n}{pq}=n\left(1-\dfrac{1}{p}\right)\left(1-\dfrac{1}{q}\right)\)
那么同理,当 \(n=\displaystyle\prod_{i=1}^{k}p_i^{t_i}\) 时,有:
\[\varphi(n)=n\left(1-\dfrac{1}{p_1}\right)\left(1-\dfrac{1}{p_2}\right)\cdots\left(1-\dfrac{n}{p_k}\right)=n\displaystyle\prod_{i=1}^k\left(1-\dfrac{1}{p_i}\right)\]
证明:性质
设 \(n=\displaystyle\prod_{i=1}^kp_i^{a_i},m=\displaystyle\prod_{i=1}^tq_i^{b_i}\ \ \ (\gcd(n,m)=1)\)
\[\begin{aligned}\varphi(nm)= & nm\displaystyle\prod_{i=1}^k\left(1-\dfrac{1}{p_i}\right)\displaystyle\prod_{j=1}^t\left(1-\dfrac{1}{q_j}\right)\\= & n\displaystyle\prod_{i=1}^k\left(1-\dfrac{1}{p_i}\right)m\displaystyle\prod_{j=1}^t\left(1-\dfrac{1}{q_j}\right)\\ = & \varphi(n)\varphi(m)\end{aligned}\]
证明:实现
记 \(f(n)=\displaystyle\sum_{d\mid n}\varphi(d)\)。则由于:
\(f(n)f(m)=\displaystyle\sum_{i\mid n}\varphi(i)\displaystyle\sum_{j\mid n}\varphi(j)=\displaystyle\sum_{d\mid nm}\varphi(d)=f(nm)\)
可以得到 \(f(n)\) 为积性函数。
设 \(n=\displaystyle\prod_{i=1}^kp_i^{t_i}\)。
而对于 \(f(p^c)=\displaystyle\sum_{i=1}^c\varphi(p^i)=\displaystyle\sum_{i=1}^cp^i-p^{i-1}=p^c\)
\(\therefore f(n)=\displaystyle\prod_{i=1}^kf(p_i^{t_i})=\displaystyle\prod_{i=1}^kp_i^{t_i}=n\)
证明:
当 \(n=1\) 时,\(\displaystyle\sum_{d|n}=\mu(1)=1=[n=1]\)。
当 \(n>1\) 时,我们记 \(n=\displaystyle\prod_{i=1}^kp_i^{t_i}\)
当 \(\exists t_i,t_i>1\) 时,\(\mu(n)=0\)。
当 \(\forall t_i,t_i=1\) 时,对于 \(\mu(d)=(-1)^r\) 这样的存在 \(C_k^r\) 个。
\(\therefore \displaystyle\sum_{d\mid n}\mu(d)=C_k^0+C_k^1+C_k^2+\cdots+(-1)^kC_k^k=\displaystyle\sum_{i=0}^k(-1)^iC_k^i\)
由二项式定理:\((x+y)^n=\displaystyle\sum_{i=0}^nC_n^ix^iy^{n-i}\)
\(\therefore \displaystyle\sum_{d\mid n}\mu(d)=\displaystyle\sum_{i=0}^k(-1)^iC_k^i=(-1+1)^n=0\)
证明:实现
\(\begin{aligned}\displaystyle\sum_{d\mid n}\dfrac{\mu(d)}{d}=&\displaystyle\sum_{d\mid n}\dfrac{\mu(d)\frac{n}{d}}{n}\\=& \dfrac{\displaystyle\sum_{d\mid n}\mu(d)Id\left(\frac{n}{d}\right)}{n}\\= & \dfrac{\mu(n)*Id(n)}{n}\end{aligned}\)
根据 \(\varphi*1=Id\Leftrightarrow\varphi*1*\mu=\mu*Id\Leftrightarrow\varphi*\epsilon=\mu*Id\) 得
\(\displaystyle\sum_{d\mid n}\dfrac{\mu(d)}{d}=\dfrac{\mu(n)*Id(n)}{n}=\dfrac{\varphi(n)}{n}\)
欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/) | Powered by Discuz! X3.4 |