ToB企服应用市场:ToB评测及商务社交产业平台

标题: 计算机图像编码入门篇(上) [打印本页]

作者: 尚未崩坏    时间: 2023-11-16 14:29
标题: 计算机图像编码入门篇(上)
前言

本文旨在为初学者提供有关计算机图像编码的基础知识,以帮助他们初步理解计算机中图像编码的概念。鉴于我个人知识的限制,如有不准确之处,欢迎指正并提供建议。
文中部分内容参考ChatGPT,在此感谢ppword的支持。
一、认识图片

我们先来看一张图片:

如果我们把它用ps打开,再放大后你可以看到如下信息:

从上面的图中,我们可以看到图片好像是由很多个小方块组成的,每个方块都有一个自己的颜色,这个颜色是单一的。图片的宽是60个小方块,图片的高是50个小方块,整个图片有60*50=3000个小方块组成。
1、像素

图片的像素是指图像的最小单位,通常以像素(pixel)来表示。每个像素都是图像中的一个小方块,它们排列在一个二维网格中,以创建完整的图像。
2、分辨率

图片分辨率是指图像中包含的像素数量,通常以水平像素数和垂直像素数表示。分辨率决定了图像的清晰度和细节水平。
以下是有关图片分辨率的详细介绍:
3、像素的颜色

现在我们是不是只要把图片中的每个像素,用0和1的组合来表示,就可以在计算机中存储了呢,那我们要怎么来表示呢?


现在我们已经知道了,可以怎么样来表示图片像素的颜色,那现实生活中这么多种颜色,又怎么和这些数字对应上呢?解决这个问题之前,我们先来了解一下什么叫“图片的位深度”。
4、图片的位深度

图片的位深度,也称为色深或像素深度,它是指每个像素在图像中用多少位来表示其颜色或灰度级别。位深度决定了图像能够表示多少不同的颜色或灰度级别,以及图像的颜色精度。
常见的位深度包括:
位深度的增加会增加图像的颜色精度,使其能够表示更多的颜色或灰度级别。然而,更高的位深度也会导致图像文件变得更大,需要更多的存储空间。选择位深度通常要根据具体应用和需求来权衡。
接下来,我们再来看颜色所对应的值都可以怎么来确定。
二、RGB色彩空间

RGB颜色空间是一种用于表示彩色图像的常见颜色模型。RGB代表红色(Red)、绿色(Green)和蓝色(Blue),这三种颜色通道是通过不同的亮度值的组合来创建各种颜色的。在RGB颜色空间中,每个像素由三个分量组成,分别代表了红色、绿色和蓝色通道的亮度值。通过调整这三个通道的亮度值,可以混合出各种颜色。
1、发现

2、常用数字表示方法

我们现在只要把R、G、B的亮度值,用数字的方式表示出来,如:
3、颜色的表示方法

计算机中表示RGB颜色的方法主要有两种:整数表示和浮点数表示。这些方法是为了以数字形式存储和处理颜色信息而设计的,通常使用固定位数的通道值来表示红色(R)、绿色(G)、蓝色(B)颜色分量。
对于R通道,取值0表示没有红光,取值255表示最大强度的红光。如果想表示更高的颜色精度,那只要把各通道的光的强度划分的更细就可以表示出来了。

这两种表示方法都是为了在计算机中处理颜色而设计的,可以根据特定应用的需求选择使用整数表示还是浮点数表示。整数表示通常更常见,因为它们占用较少的存储空间,而浮点数表示提供更高的精度,适用于需要更高颜色精度的任务。
4、常见颜色的RGB

常见的24bit颜色:
从上面能看出,对于每个像素的值,在内存中是按RGB的顺序排放的,但有些地方有会出现BGR的顺序,使用过OpenCV的同学估计知道。
5、总结

尽管RGB颜色空间可以表示大多数可见颜色,但它并不是唯一的颜色模型。其他颜色模型,如CMYK、HSV、YUV等,也具有各自的优势,适用于不同的应用领域。选择颜色模型通常根据具体的需求和颜色表示方式来确定。
三、HSV色彩空间

HSV(Hue, Saturation, Value)是一种常见的颜色模型,用于描述和表示颜色。它强调颜色的感知属性,如色相(Hue)、饱和度(Saturation)、亮度(Value),并因此在图像处理、图形设计和艺术创作中得到广泛应用。
1、详细介绍:

2、表示方法

HSV与RGB两种颜色模式都可以用来表示同一种颜色,但是,计算机显示器和许多其他设备都是基于RGB颜色模式工作的,因此在最终存储和显示时,通常会将HSV颜色模式转换为RGB颜色模式。
HSV到RGB的转换过程涉及一些数学计算,根据H(色相)在色轮上的位置,S(饱和度)和V(明度)的值,可以计算出对应的R、G、B值。
这种转换通常都由图形处理软件和编程语言库自动进行,使用者通常不需要直接进行这种转换。
YUV,是一种颜色编码方法。常使用在各个影像处理组件中。 YUV在对照片或影片编码时,考虑到人类的感知能力,允许降低色度的带宽。这样就能为我们节省不少带宽,我们下次重点讨论一下。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!




欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/) Powered by Discuz! X3.4