IT评测·应用市场-qidao123.com

标题: 弹性伸缩落地实践 [打印本页]

作者: 半亩花草    时间: 2023-12-29 16:04
标题: 弹性伸缩落地实践
弹性伸缩落地实践

1. 什么是 HPA ?

HPA(Horizontal Pod Autoscaler)是 Kubernetes 中的一种资源自动伸缩机制,用于根据某些指标动态调整 Pod 的副本数量。
2. 什么时候需要 HPA ?

3. 原生 HPA 的不足

4. KEDA

采用 KEDA 作为弹性伸缩系统的基座,主要考虑到如下优势点:
4.1 工作原理

KEDA 监控来自外部指标提供程序系统(例如 Azure Monitor)的指标,然后根据基于指标值的缩放规则进行缩放。它直接与度量提供者系统通信。它作为 Kubernetes Operator 运行,它只是一个 pod 并持续监控。

KEDA 将 K8s Core Metrics Pipeline 和 Monitoring Pipeline 处理流程统一化,并内置多种 scaler ( link ),提供开箱即用的弹性策略支持,如常见的基于 CPU/Memory 的弹性策略、定时弹性等:

4. 最佳实践

说明:
原生Deployment对象不支持灰度发布策略,所以改用 Argo-Rollout 资源对象,下面示例均采用 Argo-Rollout 演示
4.1 定时弹性

4.1.1 后端模版
  1. apiVersion: keda.sh/v1alpha1<br>kind: ScaledObject<br>metadata:<br>  name: <appid>-cron<br>  namespace: <env><br>spec:<br>  minReplicaCount: <origin-replicas><br>  scaleTargetRef:<br>    apiVersion: argoproj.io/v1alpha1<br>    kind: Rollout<br>    name: <appid>-default<br>  triggers:<br>  - type: cron<br>    metadata:<br>      timezone: Asia/Shanghai<br>      start: 30 * * * *<br>      end: 45 * * * *<br>      desiredReplicas: "10"
复制代码
4.1.2 前端设计

支持三个周期



4.1.3 消息通知模版
  1. 定时HPA动态扩缩容提醒:<br>​<br>AppID:<appid><br>归属环境:<env><br>容器集群:<cluster><br>开始扩容时间:30 11 * * 1<br>结束扩容时间:30 12 * * 1<br>容器数量变化:1 --> 2<br>触发时间:2023-11-13 12:35:16<br>如有疑问可参考:HPA使用文档,或咨询@SRE客服
复制代码
4.2 基于资源的弹性

根据 cpu、mem 等资源使用率,自动扩缩容,低负载缩容,减小不必要资源占用,高负载自动扩容,保证应用有足够的资源使用。
4.2.1 后端模版(数据降噪)

说明:
基于 Prometheus 拉取真实资源使用情况,并屏蔽刚启动的 Pod
-default 为基线应用,cluster、zone 是 Prometheus remote_write 到 VictoriaMetrics 新增便签,便于区分集群和区域
VictoriaMetrics 是统一汇总、查询层,方便不同集群使用一套数据源
  1. apiVersion: keda.sh/v1alpha1<br>kind: ScaledObject<br>metadata:<br>  labels:<br>    scaledobject.keda.sh/name: <appid><br>  name: <appid><br>  namespace:<env><br>spec:<br>  maxReplicaCount: <max-replicas><br>  minReplicaCount: <origin-replicas><br>  scaleTargetRef:<br>    apiVersion: argoproj.io/v1alpha1<br>    kind: Rollout<br>    name: <appid>-default<br>  triggers:<br>  - metadata:<br>      metricName: cpu_utilization<br>      query: sum((sum (rate(container_cpu_usage_seconds_total{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!=""}[1m]))<br>        by(pod) and on(pod) time() - kube_pod_start_time{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*"}<br>        > 150 )/( sum (container_spec_cpu_quota{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!=""})<br>        by(pod) /100000) * 100)<br>      serverAddress: http://<victoria-select>/select/1/prometheus<br>      threshold: "80"<br>    type: prometheus<br>  - metadata:<br>      metricName: mem_utilization<br>      query: sum((sum by(pod) (container_memory_working_set_bytes{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!="",container!="POD"})<br>        and on(pod) time() -kube_pod_start_time{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*"}><br>        150) / sum by(pod) (container_spec_memory_limit_bytes{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!="",container!="POD"})*100)<br>      serverAddress: http://<victoria-select>/select/1/prometheus<br>      threshold: "80"<br>    type: prometheus
复制代码
4.2.2 前端设计


4.2.3 消息通知模版
  1. 指标HPA动态扩缩容提醒:<br> <br>AppID:<appid><br>归属环境:<env><br>容器集群:<cluster><br>触发指标:cpu使用率(设定阈值为: 40.0%)<br>触发指标当前值:77.0%<br>容器数量变化:1 --> 2<br>触发时间:2023-11-16 10:38:40<br>如有疑问可参考:HPA使用文档,或咨询@SRE客服
复制代码
4.3 基于业务指标的弹性

上生产前,在 UT 环境压测,确定 最大 QPS、最高接受的 RT、最大接受 消息积压数等,监控平台提供接口,根据阀值,自动扩容,自动应对突然流量或压力,保障应用稳定性。
4.3.1 后端模版

说明:
QPS 取自 CAT 数据,SRE这边将 CAT 数据使用工具写入到 VictoriaMetrics 中
前端设计、消息通知 和 基于资源的弹性使用的一套模版,都属于基于指标触发的 HPA,这里不再赘述
  1. apiVersion: keda.sh/v1alpha1<br>kind: ScaledObject<br>metadata:<br>  labels:<br>    scaledobject.keda.sh/name: <appid><br>  name: <appid><br>  namespace: <env><br>spec:<br>  maxReplicaCount: <max-replicas><br>  minReplicaCount: <origin-replicas><br>  scaleTargetRef:<br>    apiVersion: argoproj.io/v1alpha1<br>    kind: Rollout<br>    name: <appid>-default<br>  triggers:<br>  - metadata:<br>      metricName: http_requests_total<br>      query: sum(cat_url_info{appid="<appid>",type="count",env="<env>",assettype="docker",zone="<zone>",host=~"<appid>-default.*"})/60<br>      serverAddress: http://<victoria-select>/select/1/prometheus<br>      threshold: "1000"<br>    type: prometheus
复制代码
4.4 补充说明

4.4.1 计算公式

 计算公式检查触发器间隔指标最新数据间隔备注CPU 使用率所有容器CPU使用率之和/ 容器数量30s30s排除了刚启动的 PodMEM 使用率所有容器MEM使用率之和 / 容器数量30s30s排除了刚启动的 PodQPS所有容器每秒的请求量 / 容器数量30s60s最新数据为 上一分钟 QPS 的平均值4.4.2 扩缩容默认触发时间

扩容时间
当检测结果大于设置的阈值时,立刻触发扩容,没有稳定窗口。
  1. 期望副本数 = ceil[当前副本数 * (当前指标 / 期望指标)]
复制代码
⚠️ HPA 在计算目标副本数时会有一个10%的波动因子。如果在波动范围内,HPA 并不会调整副本数目。
缩容时间
稳定窗口的时间为 300 秒,满足缩容条件后,连续5分钟持续满足缩容条件,触发缩容
4.5 建立可观测性大盘

后续补充
4.6 注意事项(优雅上下线)

自动扩容大多数是在高并发大流量情况触发,此时如果没有对应的解决方案,就会产生短时间流量有损问题。
这里先说下问题,下篇文章会详细介绍具体场景及解决方案

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!




欢迎光临 IT评测·应用市场-qidao123.com (https://dis.qidao123.com/) Powered by Discuz! X3.4