ToB企服应用市场:ToB评测及商务社交产业平台
标题:
Python采集1000多所世界大学排名数据,制作可视化图
[打印本页]
作者:
王國慶
时间:
2022-8-26 02:20
标题:
Python采集1000多所世界大学排名数据,制作可视化图
前言
QS世界大学排名(QS World University Rankings)是由英国一家国际教育市场咨询公司Quacquarelli Symonds(简称QS)所发表的年度世界大学排名
采集全球大学排名数据(源码已分享,求点赞)
import requests # 发送请求
import re
import csv
with open('rank.csv', mode='a', encoding='utf-8', newline='') as f:
csv_writer = csv.writer(f)
csv_writer.writerow(['country', 'rank', 'region', 'score_1', 'score_2', 'score_3', 'score_4', 'score_5', 'score_6', 'total_score', 'stars', 'university', 'year'])
def replace(str_):
str_ = re.findall('(.*?)', str_)[0]
return str_
url = 'https://www.qschina.cn/sites/default/files/qs-rankings-data/cn/2057712_indicators.txt'
# 1. 发送请求
response = requests.get(url)
# <Response [200]>: 请求成功
# 2. 获取数据
json_data = response.json() # Python 字典
# 3. 解析数据
# 字典
data_list = json_data['data']
for i in data_list:
country = i['location'] # 国家/地区
rank = i['overall_rank'] # 排名
region = i['region'] # 大洲
score_1 = replace(i['ind_76']) # 学术声誉
score_2 = replace(i['ind_77']) # 雇主声誉
score_3 = replace(i['ind_36']) # 师生比
score_4 = replace(i['ind_73']) # 教员引用率
score_5 = replace(i['ind_18']) # 国际教师
score_6 = replace(i['ind_14']) # 国际学生
total_score = replace(i['overall']) # 总分
stars = i['stars'] # 星级
uni = i['uni'] # 大学名称
university = re.findall('<a target="_blank" href="https://www.cnblogs.com/.*?" >(.*?)</a>', uni)[0]
year = "2021" # 年份
print(country, rank, region, score_1, score_2, score_3, score_4, score_5, score_6, total_score, stars, university, year)
with open('rank.csv', mode='a', encoding='utf-8', newline='') as f:
csv_writer = csv.writer(f)
csv_writer.writerow([country, rank, region, score_1, score_2, score_3, score_4, score_5, score_6, total_score, stars, university, year])
复制代码
可视化展示
导入所需模块
from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.components import Table
import re
import pandas as pd
复制代码
导入数据
df = pd.read_csv('rank.csv')
# 香港,澳门与中国大陆地区等在榜单中是分开的记录的,这边都归为china
df['loc'] = df['country']
df['country'].replace(['China (Mainland)', 'Hong Kong SAR', 'Taiwan', 'Macau SAR'],'China',inplace=True)
复制代码
2021年世界大学排名(QS) TOP 100
bar = (Bar()
.add_xaxis(university)
.add_yaxis('', score, category_gap='30%')
.set_global_opts(title_opts=opts.TitleOpts(title="2021年世界大学排名(QS) TOP 100",
pos_left="center",
title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
datazoom_opts=opts.DataZoomOpts(range_start=70, range_end=100, orient='vertical'),
visualmap_opts=opts.VisualMapOpts(is_show=False, max_=100, min_=60, dimension=0,
range_color=['#00FFFF', '#FF7F50']),
legend_opts=opts.LegendOpts(is_show=False),
xaxis_opts=opts.AxisOpts(is_show=False, is_scale=True),
yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(is_show=False),
axislabel_opts=opts.LabelOpts(font_size=12)))
.set_series_opts(label_opts=opts.LabelOpts(is_show=True,
position='right',
font_style='italic'),
itemstyle_opts={"normal": {
"barBorderRadius": [30, 30, 30, 30],
'shadowBlur': 10,
'shadowColor': 'rgba(120, 36, 50, 0.5)',
'shadowOffsetY': 5,
}
}
).reversal_axis())
grid = (
Grid(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='1200px'))
.add(bar, grid_opts=opts.GridOpts(pos_right='10%', pos_left='20%'))
)
grid.render_notebook()
复制代码
TOP 500中的中国大学
bar = (Bar()
.add_xaxis(university)
.add_yaxis('', score, category_gap='30%')
.set_global_opts(title_opts=opts.TitleOpts(title="TOP 500中的中国大学",
pos_left="center",
title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
datazoom_opts=opts.DataZoomOpts(range_start=50, range_end=100, orient='vertical'),
visualmap_opts=opts.VisualMapOpts(is_show=False, max_=90, min_=20, dimension=0,
range_color=['#00FFFF', '#FF7F50']),
legend_opts=opts.LegendOpts(is_show=False),
xaxis_opts=opts.AxisOpts(is_show=False, is_scale=True),
yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(is_show=False),
axislabel_opts=opts.LabelOpts(font_size=12)))
.set_series_opts(label_opts=opts.LabelOpts(is_show=True,
position='right',
font_style='italic'),
itemstyle_opts={"normal": {
"barBorderRadius": [30, 30, 30, 30],
'shadowBlur': 10,
'shadowColor': 'rgba(120, 36, 50, 0.5)',
'shadowOffsetY': 5,
}
}
).reversal_axis())
grid = (
Grid(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='1200px'))
.add(bar, grid_opts=opts.GridOpts(pos_right='10%', pos_left='20%'))
)
grid.render_notebook()
复制代码
TOP 1000高校按大洲分布
[code]t_data = df[(df.year==2021) & (df['rank']
欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/)
Powered by Discuz! X3.4