下面以"无向图"为例,来对深度优先搜索进行演示。
对上面的图G1进行深度优先遍历,从顶点A开始。
第1步: 访问A。
第2步: 访问(A的邻接点)C。 在第1步访问A之后,接下来应该访问的是A的邻接点,即"C,D,F"中的一个。但在本文的实现中,顶点ABCDEFG是按照顺序存储,C在"D和F"的前面,因此,先访问C。
第3步: 访问(C的邻接点)B。 在第2步访问C之后,接下来应该访问C的邻接点,即"B和D"中一个(A已经被访问过,就不算在内)。而由于B在D之前,先访问B。
第4步: 访问(C的邻接点)D。 在第3步访问了C的邻接点B之后,B没有未被访问的邻接点;因此,返回到访问C的另一个邻接点D。
第5步: 访问(A的邻接点)F。 前面已经访问了A,而且访问完了"A的邻接点B的所有邻接点(包罗递归的邻接点在内)";因此,此时返回到访问A的另一个邻接点F。
第6步: 访问(F的邻接点)G。
第7步: 访问(G的邻接点)E。
因此访问顺序是: A -> C -> B -> D -> F -> G -> E
# 有向图的深度优先搜索
下面以"有向图"为例,来对深度优先搜索进行演示。
对上面的图G2进行深度优先遍历,从顶点A开始。
第1步: 访问A。
第2步: 访问B。 在访问了A之后,接下来应该访问的是A的出边的另一个顶点,即顶点B。
第3步: 访问C。 在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。
第4步: 访问E。 接下来访问C的出边的另一个顶点,即顶点E。
第5步: 访问D。 接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。
第6步: 访问F。 接下应该回溯"访问A的出边的另一个顶点F"。
第7步: 访问G。
因此访问顺序是: A -> B -> C -> E -> D -> F -> G
# 广度优先搜索
# 广度优先搜索介绍
广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。
它的思想是: 从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则必要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。
换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。
# 广度优先搜索图解
# 无向图的广度优先搜索
下面以"无向图"为例,来对广度优先搜索进行演示。照旧以上面的图G1为例进行说明。
第1步: 访问A。
第2步: 依次访问C,D,F。 在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。
第3步: 依次访问B,G。 在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。
第4步: 访问E。 在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。
因此访问顺序是: A -> C -> D -> F -> B -> G -> E
# 有向图的广度优先搜索
下面以"有向图"为例,来对广度优先搜索进行演示。照旧以上面的图G2为例进行说明。
第1步: 访问A。
第2步: 访问B。
第3步: 依次访问C,E,F。 在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。
第4步: 依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。照旧按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。
因此访问顺序是: A -> B -> C -> E -> F -> D -> G
# 相关实现