IT评测·应用市场-qidao123.com
标题:
python-pytorch编写transformer模型实现翻译0.5.00-写模型
[打印本页]
作者:
我爱普洱茶
时间:
2024-6-22 12:54
标题:
python-pytorch编写transformer模型实现翻译0.5.00-写模型
前言
在网上看了一篇文章,借用了文章的大部分代码,并对代码的预测进行修改使得可以正确的预测了,具体链接找了半天找不到
代码
import numpy as np # 导入 numpy 库
import torch # 导入 torch 库
import torch.nn as nn # 导入 torch.nn 库
d_k = 64 # K(=Q) 维度
d_v = 64 # V 维度
# 定义缩放点积注意力类
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, Q, K, V, attn_mask):
#------------------------- 维度信息 --------------------------------
# Q K V [batch_size, n_heads, len_q/k/v, dim_q=k/v] (dim_q=dim_k)
# attn_mask [batch_size, n_heads, len_q, len_k]
#----------------------------------------------------------------
# 计算注意力分数(原始权重)[batch_size,n_heads,len_q,len_k]
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)
#------------------------- 维度信息 --------------------------------
# scores [batch_size, n_heads, len_q, len_k]
#-----------------------------------------------------------------
# 使用注意力掩码,将 attn_mask 中值为 1 的位置的权重替换为极小值
#------------------------- 维度信息 --------------------------------
# attn_mask [batch_size, n_heads, len_q, len_k], 形状和 scores 相同
#-----------------------------------------------------------------
scores.masked_fill_(attn_mask, -1e9)
# 对注意力分数进行 softmax 归一化
weights = nn.Softmax(dim=-1)(scores)
#------------------------- 维度信息 --------------------------------
# weights [batch_size, n_heads, len_q, len_k], 形状和 scores 相同
#-----------------------------------------------------------------
# 计算上下文向量(也就是注意力的输出), 是上下文信息的紧凑表示
context = torch.matmul(weights, V)
#------------------------- 维度信息 --------------------------------
# context [batch_size, n_heads, len_q, dim_v]
#-----------------------------------------------------------------
return context, weights # 返回上下文向量和注意力分数
# 定义多头自注意力类
d_embedding = 512 # Embedding 的维度
n_heads = 8 # Multi-Head Attention 中头的个数
batch_size = 6 # 每一批的数据大小
class MultiHeadAttention(nn.Module):
def __init__(self):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_embedding, d_k * n_heads) # Q的线性变换层
self.W_K = nn.Linear(d_embedding, d_k * n_heads) # K的线性变换层
self.W_V = nn.Linear(d_embedding, d_v * n_heads) # V的线性变换层
self.linear = nn.Linear(n_heads * d_v, d_embedding)
self.layer_norm = nn.LayerNorm(d_embedding)
def forward(self, Q, K, V, attn_mask):
#------------------------- 维度信息 --------------------------------
# Q K V [batch_size, len_q/k/v, embedding_dim]
#-----------------------------------------------------------------
residual, batch_size = Q, Q.size(0) # 保留残差连接
# 将输入进行线性变换和重塑,以便后续处理
q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)
k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)
v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)
#------------------------- 维度信息 --------------------------------
# q_s k_s v_s: [batch_size, n_heads, len_q/k/v, d_q=k/v]
#-----------------------------------------------------------------
# 将注意力掩码复制到多头 attn_mask: [batch_size, n_heads, len_q, len_k]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
#------------------------- 维度信息 --------------------------------
# attn_mask [batch_size, n_heads, len_q, len_k]
#-----------------------------------------------------------------
# 使用缩放点积注意力计算上下文和注意力权重
context, weights = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
#------------------------- 维度信息 --------------------------------
# context [batch_size, n_heads, len_q, dim_v]
# weights [batch_size, n_heads, len_q, len_k]
#-----------------------------------------------------------------
# 通过调整维度将多个头的上下文向量连接在一起
context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v)
#------------------------- 维度信息 --------------------------------
# context [batch_size, len_q, n_heads * dim_v]
#-----------------------------------------------------------------
# 用一个线性层把连接后的多头自注意力结果转换,原始地嵌入维度
output = self.linear(context)
#------------------------- 维度信息 --------------------------------
# output [batch_size, len_q, embedding_dim]
#-----------------------------------------------------------------
# 与输入 (Q) 进行残差链接,并进行层归一化后输出
output = self.layer_norm(output + residual)
#------------------------- 维度信息 --------------------------------
# output [batch_size, len_q, embedding_dim]
#-----------------------------------------------------------------
return output, weights # 返回层归一化的输出和注意力权重
# 定义逐位置前馈网络类
class PoswiseFeedForwardNet(nn.Module):
def __init__(self, d_ff=2048):
super(PoswiseFeedForwardNet, self).__init__()
# 定义一维卷积层 1,用于将输入映射到更高维度
self.conv1 = nn.Conv1d(in_channels=d_embedding, out_channels=d_ff, kernel_size=1)
# 定义一维卷积层 2,用于将输入映射回原始维度
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_embedding, kernel_size=1)
# 定义层归一化
self.layer_norm = nn.LayerNorm(d_embedding)
def forward(self, inputs):
#------------------------- 维度信息 --------------------------------
# inputs [batch_size, len_q, embedding_dim]
#----------------------------------------------------------------
residual = inputs # 保留残差连接
# 在卷积层 1 后使用 ReLU 激活函数
output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
#------------------------- 维度信息 --------------------------------
# output [batch_size, d_ff, len_q]
#----------------------------------------------------------------
# 使用卷积层 2 进行降维
output = self.conv2(output).transpose(1, 2)
#------------------------- 维度信息 --------------------------------
# output [batch_size, len_q, embedding_dim]
#----------------------------------------------------------------
# 与输入进行残差链接,并进行层归一化
output = self.layer_norm(output + residual)
#------------------------- 维度信息 --------------------------------
# output [batch_size, len_q, embedding_dim]
#----------------------------------------------------------------
return output # 返回加入残差连接后层归一化的结果
# 生成正弦位置编码表的函数,用于在 Transformer 中引入位置信息
def get_sin_enc_table(n_position, embedding_dim):
#------------------------- 维度信息 --------------------------------
# n_position: 输入序列的最大长度
# embedding_dim: 词嵌入向量的维度
#-----------------------------------------------------------------
# 根据位置和维度信息,初始化正弦位置编码表
sinusoid_table = np.zeros((n_position, embedding_dim))
# 遍历所有位置和维度,计算角度值
for pos_i in range(n_position):
for hid_j in range(embedding_dim):
angle = pos_i / np.power(10000, 2 * (hid_j // 2) / embedding_dim)
sinusoid_table[pos_i, hid_j] = angle
# 计算正弦和余弦值
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i 偶数维
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 奇数维
#------------------------- 维度信息 --------------------------------
# sinusoid_table 的维度是 [n_position, embedding_dim]
#----------------------------------------------------------------
return torch.FloatTensor(sinusoid_table) # 返回正弦位置编码表
# 定义填充注意力掩码函数
def get_attn_pad_mask(seq_q, seq_k):
#------------------------- 维度信息 --------------------------------
# seq_q 的维度是 [batch_size, len_q]
# seq_k 的维度是 [batch_size, len_k]
#-----------------------------------------------------------------
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
# 生成布尔类型张量
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # <PAD>token 的编码值为 0
#------------------------- 维度信息 --------------------------------
# pad_attn_mask 的维度是 [batch_size,1,len_k]
#-----------------------------------------------------------------
# 变形为与注意力分数相同形状的张量
pad_attn_mask = pad_attn_mask.expand(batch_size, len_q, len_k)
#------------------------- 维度信息 --------------------------------
# pad_attn_mask 的维度是 [batch_size,len_q,len_k]
#-----------------------------------------------------------------
return pad_attn_mask
# 定义编码器层类
class EncoderLayer(nn.Module):
def __init__(self):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention() # 多头自注意力层
self.pos_ffn = PoswiseFeedForwardNet() # 位置前馈神经网络层
def forward(self, enc_inputs, enc_self_attn_mask):
#------------------------- 维度信息 --------------------------------
# enc_inputs 的维度是 [batch_size, seq_len, embedding_dim]
# enc_self_attn_mask 的维度是 [batch_size, seq_len, seq_len]
#-----------------------------------------------------------------
# 将相同的 Q,K,V 输入多头自注意力层 , 返回的 attn_weights 增加了头数
enc_outputs, attn_weights = self.enc_self_attn(enc_inputs, enc_inputs,
enc_inputs, enc_self_attn_mask)
#------------------------- 维度信息 --------------------------------
# enc_outputs 的维度是 [batch_size, seq_len, embedding_dim]
# attn_weights 的维度是 [batch_size, n_heads, seq_len, seq_len]
# 将多头自注意力 outputs 输入位置前馈神经网络层
enc_outputs = self.pos_ffn(enc_outputs) # 维度与 enc_inputs 相同
#------------------------- 维度信息 --------------------------------
# enc_outputs 的维度是 [batch_size, seq_len, embedding_dim]
#-----------------------------------------------------------------
return enc_outputs, attn_weights # 返回编码器输出和每层编码器注意力权重
# 定义编码器类
n_layers = 6 # 设置 Encoder 的层数
class Encoder(nn.Module):
def __init__(self, corpus):
super(Encoder, self).__init__()
self.src_emb = nn.Embedding(len(corpus.src_vocab), d_embedding) # 词嵌入层
self.pos_emb = nn.Embedding.from_pretrained( \
get_sin_enc_table(corpus.src_len+1, d_embedding), freeze=True) # 位置嵌入层
self.layers = nn.ModuleList(EncoderLayer() for _ in range(n_layers))# 编码器层数
def forward(self, enc_inputs):
#------------------------- 维度信息 --------------------------------
# enc_inputs 的维度是 [batch_size, source_len]
#-----------------------------------------------------------------
# 创建一个从 1 到 source_len 的位置索引序列
pos_indices = torch.arange(1, enc_inputs.size(1) + 1).unsqueeze(0).to(enc_inputs)
#------------------------- 维度信息 --------------------------------
# pos_indices 的维度是 [1, source_len]
#-----------------------------------------------------------------
# 对输入进行词嵌入和位置嵌入相加 [batch_size, source_len,embedding_dim]
enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(pos_indices)
#------------------------- 维度信息 --------------------------------
# enc_outputs 的维度是 [batch_size, seq_len, embedding_dim]
#-----------------------------------------------------------------
# 生成自注意力掩码
enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
#------------------------- 维度信息 --------------------------------
# enc_self_attn_mask 的维度是 [batch_size, len_q, len_k]
#-----------------------------------------------------------------
enc_self_attn_weights = [] # 初始化 enc_self_attn_weights
# 通过编码器层 [batch_size, seq_len, embedding_dim]
for layer in self.layers:
enc_outputs, enc_self_attn_weight = layer(enc_outputs, enc_self_attn_mask)
enc_self_attn_weights.append(enc_self_attn_weight)
#------------------------- 维度信息 --------------------------------
# enc_outputs 的维度是 [batch_size, seq_len, embedding_dim] 维度与 enc_inputs 相同
# enc_self_attn_weights 是一个列表,每个元素的维度是 [batch_size, n_heads, seq_len, seq_len]
#-----------------------------------------------------------------
return enc_outputs, enc_self_attn_weights # 返回编码器输出和编码器注意力权重
# 生成后续注意力掩码的函数,用于在多头自注意力计算中忽略未来信息
def get_attn_subsequent_mask(seq):
#------------------------- 维度信息 --------------------------------
# seq 的维度是 [batch_size, seq_len(Q)=seq_len(K)]
#-----------------------------------------------------------------
# 获取输入序列的形状
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
#------------------------- 维度信息 --------------------------------
# attn_shape 是一个一维张量 [batch_size, seq_len(Q), seq_len(K)]
#-----------------------------------------------------------------
# 使用 numpy 创建一个上三角矩阵(triu = triangle upper)
subsequent_mask = np.triu(np.ones(attn_shape), k=1)
#------------------------- 维度信息 --------------------------------
# subsequent_mask 的维度是 [batch_size, seq_len(Q), seq_len(K)]
#-----------------------------------------------------------------
# 将 numpy 数组转换为 PyTorch 张量,并将数据类型设置为 byte(布尔值)
subsequent_mask = torch.from_numpy(subsequent_mask).byte()
#------------------------- 维度信息 --------------------------------
# 返回的 subsequent_mask 的维度是 [batch_size, seq_len(Q), seq_len(K)]
#-----------------------------------------------------------------
return subsequent_mask # 返回后续位置的注意力掩码
# 定义解码器层类
class DecoderLayer(nn.Module):
def __init__(self):
super(DecoderLayer, self).__init__()
self.dec_self_attn = MultiHeadAttention() # 多头自注意力层
self.dec_enc_attn = MultiHeadAttention() # 多头自注意力层,连接编码器和解码器
self.pos_ffn = PoswiseFeedForwardNet() # 位置前馈神经网络层
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
#------------------------- 维度信息 --------------------------------
# dec_inputs 的维度是 [batch_size, target_len, embedding_dim]
# enc_outputs 的维度是 [batch_size, source_len, embedding_dim]
# dec_self_attn_mask 的维度是 [batch_size, target_len, target_len]
# dec_enc_attn_mask 的维度是 [batch_size, target_len, source_len]
#-----------------------------------------------------------------
# 将相同的 Q,K,V 输入多头自注意力层
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs,
dec_inputs, dec_self_attn_mask)
#------------------------- 维度信息 --------------------------------
# dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
# dec_self_attn 的维度是 [batch_size, n_heads, target_len, target_len]
#-----------------------------------------------------------------
# 将解码器输出和编码器输出输入多头自注意力层
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs,
enc_outputs, dec_enc_attn_mask)
#------------------------- 维度信息 --------------------------------
# dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
# dec_enc_attn 的维度是 [batch_size, n_heads, target_len, source_len]
#-----------------------------------------------------------------
# 输入位置前馈神经网络层
dec_outputs = self.pos_ffn(dec_outputs)
#------------------------- 维度信息 --------------------------------
# dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
# dec_self_attn 的维度是 [batch_size, n_heads, target_len, target_len]
# dec_enc_attn 的维度是 [batch_size, n_heads, target_len, source_len]
#-----------------------------------------------------------------
# 返回解码器层输出,每层的自注意力和解 - 编码器注意力权重
return dec_outputs, dec_self_attn, dec_enc_attn
# 定义解码器类
n_layers = 6 # 设置 Decoder 的层数
class Decoder(nn.Module):
def __init__(self, corpus):
super(Decoder, self).__init__()
self.tgt_emb = nn.Embedding(len(corpus.tgt_vocab), d_embedding) # 词嵌入层
self.pos_emb = nn.Embedding.from_pretrained( \
get_sin_enc_table(corpus.tgt_len+1, d_embedding), freeze=True) # 位置嵌入层
self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) # 叠加多层
def forward(self, dec_inputs, enc_inputs, enc_outputs):
#------------------------- 维度信息 --------------------------------
# dec_inputs 的维度是 [batch_size, target_len]
# enc_inputs 的维度是 [batch_size, source_len]
# enc_outputs 的维度是 [batch_size, source_len, embedding_dim]
#-----------------------------------------------------------------
# 创建一个从 1 到 source_len 的位置索引序列
pos_indices = torch.arange(1, dec_inputs.size(1) + 1).unsqueeze(0).to(dec_inputs)
#------------------------- 维度信息 --------------------------------
# pos_indices 的维度是 [1, target_len]
#-----------------------------------------------------------------
# 对输入进行词嵌入和位置嵌入相加
dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(pos_indices)
#------------------------- 维度信息 --------------------------------
# dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
#-----------------------------------------------------------------
# 生成解码器自注意力掩码和解码器 - 编码器注意力掩码
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # 填充位掩码
dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs) # 后续位掩码
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask \
+ dec_self_attn_subsequent_mask), 0)
dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # 解码器 - 编码器掩码
#------------------------- 维度信息 --------------------------------
# dec_self_attn_pad_mask 的维度是 [batch_size, target_len, target_len]
# dec_self_attn_subsequent_mask 的维度是 [batch_size, target_len, target_len]
# dec_self_attn_mask 的维度是 [batch_size, target_len, target_len]
# dec_enc_attn_mask 的维度是 [batch_size, target_len, source_len]
#-----------------------------------------------------------------
dec_self_attns, dec_enc_attns = [], [] # 初始化 dec_self_attns, dec_enc_attns
# 通过解码器层 [batch_size, seq_len, embedding_dim]
for layer in self.layers:
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs,
dec_self_attn_mask, dec_enc_attn_mask)
dec_self_attns.append(dec_self_attn)
dec_enc_attns.append(dec_enc_attn)
#------------------------- 维度信息 --------------------------------
# dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
# dec_self_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, target_len, target_len]
# dec_enc_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, target_len, source_len]
#-----------------------------------------------------------------
# 返回解码器输出,解码器自注意力和解码器 - 编码器注意力权重
return dec_outputs, dec_self_attns, dec_enc_attns
# 定义 Transformer 模型
class Transformer(nn.Module):
def __init__(self, corpus):
super(Transformer, self).__init__()
self.encoder = Encoder(corpus) # 初始化编码器实例
self.decoder = Decoder(corpus) # 初始化解码器实例
# 定义线性投影层,将解码器输出转换为目标词汇表大小的概率分布
self.projection = nn.Linear(d_embedding, len(corpus.tgt_vocab), bias=False)
def forward(self, enc_inputs, dec_inputs):
#------------------------- 维度信息 --------------------------------
# enc_inputs 的维度是 [batch_size, source_seq_len]
# dec_inputs 的维度是 [batch_size, target_seq_len]
#-----------------------------------------------------------------
# 将输入传递给编码器,并获取编码器输出和自注意力权重
enc_outputs, enc_self_attns = self.encoder(enc_inputs)
#------------------------- 维度信息 --------------------------------
# enc_outputs 的维度是 [batch_size, source_len, embedding_dim]
# enc_self_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, src_seq_len, src_seq_len]
#-----------------------------------------------------------------
# 将编码器输出、解码器输入和编码器输入传递给解码器
# 获取解码器输出、解码器自注意力权重和编码器 - 解码器注意力权重
dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
#------------------------- 维度信息 --------------------------------
# dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
# dec_self_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, tgt_seq_len, src_seq_len]
# dec_enc_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, tgt_seq_len, src_seq_len]
#-----------------------------------------------------------------
# 将解码器输出传递给投影层,生成目标词汇表大小的概率分布
dec_logits = self.projection(dec_outputs)
#------------------------- 维度信息 --------------------------------
# dec_logits 的维度是 [batch_size, tgt_seq_len, tgt_vocab_size]
#-----------------------------------------------------------------
# 返回逻辑值 ( 原始预测结果 ), 编码器自注意力权重,解码器自注意力权重,解 - 编码器注意力权重
return dec_logits, enc_self_attns, dec_self_attns, dec_enc_attns
复制代码
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
欢迎光临 IT评测·应用市场-qidao123.com (https://dis.qidao123.com/)
Powered by Discuz! X3.4