在这里,我们以一个简朴的员工绩效评估示例来展示怎样使用Python编程语言和Scikit-learn库实现呆板学习算法。
```python import numpy as np import pandas as pd from sklearn.modelselection import traintestsplit from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracyscore
加载数据
data = pd.readcsv('employeeperformance.csv')
数据预处理
X = data.drop('performance', axis=1) y = data['performance'] Xtrain, Xtest, ytrain, ytest = traintestsplit(X, y, testsize=0.2, randomstate=42)
数据尺度化