在这里,我们将通过一个智能交通路况猜测的具体代码实例来说明怎样使用大数据技术来实现交通路况的猜测和分析。
```python import pandas as pd import numpy as np from sklearn.linearmodel import LinearRegression from sklearn.modelselection import traintestsplit from sklearn.metrics import meansquarederror
读取交通数据
data = pd.readcsv('trafficdata.csv')
数据预处理
data = data.dropna() data = data[data['time'] >= '08:00'] data = data[data['time'] <= '18:00'] data['time'] = pd.to_datetime(data['time']) data['hour'] = data['time'].dt.hour data['day'] = data['time'].dt.weekday
时间序列分析
data['hour'] = data['hour'].astype(int) data['day'] = data['day'].astype(int) X = data[['hour', 'day']] y = data['speed']
训练模型
Xtrain, Xtest, ytrain, ytest = traintestsplit(X, y, testsize=0.2, randomstate=42) model = LinearRegression() model.fit(Xtrain, ytrain)
猜测