qidao123.com技术社区-IT企服评测·应用市场
标题:
基于STM32的各种数学函数优化盘算方法(代码开源)
[打印本页]
作者:
乌市泽哥
时间:
2024-7-18 02:16
标题:
基于STM32的各种数学函数优化盘算方法(代码开源)
前言:
本文为手把手讲授 STM32 的数学盘算公式优化方法的教程,本教程的 MCU 利用 STM32F103ZET6 。本篇博客将利用非传统数学库盘算本领举行各种数学函数的盘算,
优化的数学盘算包罗:sin()
、
cos()
、
arctan()
、
arcsin()
与
1/sqrt()
。作为研发的项目产物,实现产物功能每每是很容易的,最紧张的焦点其实是产物功能的优化,以最优的控制亦或是斲丧时间去完成制定的任务,算法优化就是云云。本篇博客将给作者们提供嵌入式工程中常用的数学函数优化代码,盼望该博文能给读者朋侪的工程项目给予些许资助(
代码开源
)。
算法应用平台:
STM32F103ZET6;
算法优化环境:
sin() 函数优化:
Q_rsqrt() 函数优化:
一、STM32的数学盘算
1.1 STM32数学盘算概述
STM32 是 STMicroelectronics 生产的一系列 32 位 ARM Cortex-M 微控制器。它们广泛应用于工业、消费和医疗等范畴。STM32 微控制器支持各种数学盘算,包罗但不限于:
1、算术运算
:加法、减法、乘法、除法等基本运算。
2、浮点运算
:STM32F系列微控制器支持单精度和双精度浮点运算。
3、三角函数
:正弦、余弦、正切等。
4、指数和对数函数
:e的x次幂、自然对数、常用对数等。
5、根号和幂运算
:平方根、立方根、x的y次幂等。
针对这些数学盘算,STM32 通常提供硬件浮点单元 FPU 和一些数学库。利用这些功能可以大大进步盘算速度和精度。
本篇博客的数学函数优化与传统 STM32 的 Math 库的数学函数举行对比!!!
1.2 算法优化作用
算法优化是指在保证算法结果精确的条件下,通过改进算法的服从、资源斲丧、可读性等方面,使得算法在实行速度、内存利用、能耗等方面得到提升的过程。算法优化的作用紧张体现在以下几个方面:
1、进步实行速度
:优化算法可以淘汰不须要的盘算步骤,进步算法的实行服从,从而淘汰程序的运行时间。
2、增强用户体验
:在用户界面和交互式应用中,算法优化可以淘汰等候时间,进步用户体验。
3、进步稳固性
:优化算法可以淘汰程序的堕落概率,进步体系的稳固性。
4、进步可维护性
:优化后的算法结构更加清楚,逻辑更加简朴,便于后续的维护和升级。
5、增强竞争力
:在商业应用中,算法优化可以进步产物的性能,增强企业的市场竞争力。
6、节能环保
:对于嵌入式体系和移动设备,算法优化可以淘汰能耗,延长电池寿命,符合节能减排的要求。
现在,各种项目中都需要涉及到算法优化,包罗:巡线小车、送药小车竞赛、电源设计、自动驾驶的智驾、目的追踪与飞行器。
二、STM32利用定时器实现<获取代码块运算时间>的功能
2.1 STM32的代码块斲丧时间
STM32 的代码都是利用 CPU 举行盘算和实现的,故代码每步都需要斲丧肯定的时间才华完成该指定任务。各种代码亦或是算法需要斲丧的时间是完全完全不相同的,本篇博客利用 STM32 的定时器来盘算 <代码块的运行时间>,从而判断算法或代码的优劣环境!
统计 <代码块的运行时间> 的本领:(1)、逻辑分析仪;(2)、定时器读取时间;(3)、打断点纪录时间;
1、利用逻辑分析仪去统计;
在待测程序段的开始阶段使单片机的一个GPIO输出高电平,在待测程序段的末了阶段再令这个GPIO输出低电平。用示波器或者逻辑分析仪通过检查高电平的时间长度,就知道了这段代码的运行时间。
while(1){
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_SET); //PB1置1
delay_ms(500);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET); //PB1置0
delay_ms(500);
}
复制代码
延时500ms时波形如下:
修改延时为100ms;
while(1){
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_SET); //PB1置1
delay_ms(100);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET); //PB1置0
delay_ms(100);
}
复制代码
波形如下
总结:
利用示波器测量较为准确,缺点是需要单独的示波器或者逻辑分析仪等,示波器一般体积较大的还需要供电,而且还要连接GPIO口,还是有点麻烦的
2、利用定时器读取时间;
利用
TIM2->CNT
与 TIM2 的需要时间来统计代码块斲丧的时间;
3、打断点纪录时间;
推荐博客地址:http://t.csdnimg.cn/K9fyE
利用J-LINK或者ST-link 等仿真器,实现对代码运行时间的测量,首先要设置仿真器仿真的实际频率;
点击 Settings 设置
然后点击Trace 设置我们芯片的体系频率,点击Teace Enable 使能
假如工作频率设置不精确,则会造成测量的时间不精确。
仿真器默认采用的是10MHz的工作频率
点击 DEBUG 模式;
2.2 CubeMX配置
本篇博客利用 STM32 的 TIM2 来统计代码块的斲丧时间
1、RCC配置外部高速晶振(精度更高)——HSE;
2、SYS配置:Debug设置成Serial Wire(否则大概导致芯片自锁);
3、TIM配置:利用TIM2来读取代码块的斲丧时间;
为实现<获取代码块运行时间>的功能,定时器的频率越高,那获取的时间就越精确。 因此我们不分频,TIM2 挂在 APB1 上,因此如许配置TIM2的时钟频率是 72MHz。 也就是说,定时器每计一个数,代表过去时间 1/72Mhz s,即 13.8888888888889 ns。本例中TIM2的计数周期设为最大,即 (2^16)-1。 即,每过 (2^16) * (1/72Mhz) s ≈ 0.00091s,才会触发定时器计数溢出的中断。通常我们以为需测试的代码块运行时间是us级的,是肯定不会超过 0.00091s 的(读者可以本身改为 2^32 来增长上限)。 因此实现<获取代码块运行时间>的功能,是需要在代码块运行开始前,将TIM2的计数器设置为0。 在代码块运行竣事时,把 TIM2 的计数器数值 N 读出。代码块的运行时间用 N*13.8888888888889(ns) 表现。 别的,值得一提的是,这个定时器,只有在利用时才会工作,测试运行时间完毕后,可以关闭,定时器各类中断也完没有须要开启。即,仅利用占用少量的CPU资源,不利用时,完全不会占用CPU资源。
4、USART1 配置:利用串口 1 打印出代码块斲丧的时间;
5、工程配置:
2.3 代码
这段代码的焦点是利用
TIM2
的每次触发时间(作者的 TIM2 每次触发周期时间为
13.8888888888889
ns),通过盘算代码块开始与竣事时候的 TIM2 触发次数
TIM->CNT
与 TIM2 的触发时间来得到代码块所需斲丧的时间。
runtime.h
/********************************* (C) COPYRIGHT **********************************
* File Name : runtime.h
* Author : 混分巨兽龙某某
* Version : V1.0.0
* Data : 2024/04/12
* Contact : QQ:1178305328
* Description : A function that calculates the running time of a block of code
***********************************************************************************/
#ifndef __USERPROGRAM_RUNTIME_H
#define __USERPROGRAM_RUNTIME_H
extern float runtime;
void runtime_start(void);
void runtime_stop(void);
#endif
复制代码
runtime.c
/********************************* (C) COPYRIGHT **********************************
* File Name : runtime.c
* Author : 混分巨兽龙某某
* Version : V1.0.0
* Data : 2024/04/12
* Contact : QQ:1178305328
* Description : A function that calculates the running time of a block of code
***********************************************************************************/
#include "runtime.h"
#include "tim.h"
/* 代码块运行时间变量 */
float runtime = 0;
/**
* @brief 代码块开始计算时间
* @param None
* @retval
*/
void runtime_start(void){
TIM2->CNT = 0x00;
HAL_TIM_Base_Start(&htim2);
}
/**
* @brief 代码块结束计算时间
* @param None
* @retval
*/
void runtime_stop(void){
runtime = TIM2->CNT * 0.013888888889; /* TIM->CNT×的数值需要根据实际情况设置 */
HAL_TIM_Base_Stop(&htim2);
}
复制代码
2.4 代码块耗时实例
三、优化三角函数算法
3.1 sin函数优化
本篇博客利用泰勒级数睁开来举行 sin() 函数的优化!!!
勒级数是一种数学上用无限多项的序列来表现函数的方法,这里利用的是正弦函数在0点附近的泰勒睁开。
sin() 函数的泰勒级数睁开是:
sin_code:
/**
* @brief 利用泰勒级数计算sin(x)的近似值
* @param x: 计算的弧度
* @param n: 泰勒级数的项数
* @retval sin函数数值
*/
float my_sin(float x,int n)
{
float term = x; // 第一项是 x
float sin_x = 0.0; // sin(x)的累加结果
for (int i = 1; i <= n; i++) {
sin_x += term; // 累加当前项
term *= -x * x / ((2 * i) * (2 * i + 1)); // 计算下一项
}
return sin_x;
}
复制代码
sin() 函数优化的对比:
算法中的 n 也就是泰勒级数的阶数,该数值将影响 sin()函数的最终输出精度,但是 n 的数值越大,算法盘算斲丧的时间也越长!
3.2 cos函数优化
本篇博客利用泰勒级数睁开来举行 cos() 函数的优化!!!
勒级数是一种数学上用无限多项的序列来表现函数的方法,这里利用的是余弦函数在0点附近的泰勒睁开。
cos() 函数的泰勒级数睁开是:
cos_code:
/**
* @brief 利用泰勒级数计算cos(x)的近似值
* @param x: 计算的弧度
* @param n: 泰勒级数的项数
* @retval cos函数数值
*/
float my_cos(float x,int n)
{
return my_sin(x+M_PI/2,n);//奇变偶不变,符号看象限
}
复制代码
cos() 函数优化的对比:
算法中的 n 也就是泰勒级数的阶数,该数值将影响 cos()函数的最终输出精度,但是 n 的数值越大,算法盘算斲丧的时间也越长!
3.3 arctan函数优化
反三角函数中的反正切函数(arctan或atan)可以利用麦克劳林级数(Taylor series at 0)来近似盘算。反正切函数的麦克劳林级数睁开是:
对于接近 0 的 x 值,这个级数是收敛的。
arctan_code:
/**
* @brief 利用反正切麦克劳林展开式求解arctan
* @param x: 计算的数值,范围(-1,1)
* @retval arctan函数求解的弧度
* @note 阶数越高,值越准确 70°以内是准确的
*/
float arctan(float x)
{
float t = x;
float result = 0;
float X2 = x * x;
unsigned char cnt = 1;
do{
result += t / ((cnt << 1) - 1);
t = -t;
t *= X2;
cnt++;
}while(cnt <= 6); //仅计算前6项
return result;
}
复制代码
arctan函数耗时环境:
3.4 arcsin函数优化
反正弦函数(arcsin或asin)的麦克劳林级数睁开是:
这个级数对于 [-1,1] 之间的 x 值是收敛的。
arcsin_code:
/**
* @brief 利用反正切麦克劳林展开式求解arcsin
* @param x: 计算的数值,范围(-1,1)
* @retval arcsin函数求解的弧度
* @note 阶数越高,值越准确 42°以内是准确的
*/
float arcsin(float x)
{
float d=1;
float t=x;
unsigned char cnt = 1;
float result = 0;
float X2 = x*x;
if (x >= 1.0f)
{
return PI_2;
}
if (x <= -1.0f)
{
return -PI_2;
}
do
{
result += t / (d * ((cnt << 1) - 1));
t *= X2 * ((cnt << 1) - 1);//
d *= (cnt << 1);//2 4 6 8 10 ...
cnt++;
}while(cnt <= 6);
return result;
}
复制代码
arcsin函数耗时环境:
四、快速开平方根倒数算法
4.1 Q_rsqrt概述
推荐博客地址:http://t.csdnimg.cn/JuyNH
快速开平方根倒数(Fast Inverse Square Root)算法是一种用于盘算一个数的平方根倒数的快速方法,它最初在《雷神之锤III竞技场》的源代码中被发现,并因其独特性和服从而广为人知。这个算法的焦点思想是利用浮点数的特性来快速近似盘算平方根倒数。
算法的焦点:
利用浮点数的表现方法。在IEEE 754尺度中,浮点数由三部分组成:符号位、指数和尾数(或称小数部分)。算法首先将输入的浮点数转换为长整型,然后对这个整型值举行位操纵,以得到一个近似的平方根倒数。
该算法的步骤如下:
1. 将浮点数 number 转换为长整型 i。
2. 对 i 举行位操纵,得到一个近似的平方根倒数的整数表现。这个操纵是通过一个神奇的常数 0x5f3759df 和一个右移操纵来完成的。这个常数是颠末优化的,它可以大概产生一个接近于 number 的平方根倒数的近似值。
3. 将得到的整型值转换回浮点数 mongodb。
4. 利用牛顿迭代法(Newton’s method)对 mongodb 举行一次迭代,以进步结果的精度。牛顿迭代法是一种用于求解方程的近似根的方法,它通过迭代的方式来逼近实际的平方根倒数。
最终,算法返回迭代后的结果 y,这个值就是 number 的平方根倒数的近似值。
4.2 代码实现
Q_rsqrt_code:
/**
* @brief 快速计算平方根倒数数值
* @param x: 计算的数
* @retval 目标数值
*/
float Q_rsqrt(float number)
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f3759df - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration (第一次牛顿迭代)
return y;
}
复制代码
五、优化算法完备代码
myalgorithm.h:
/********************************* (C) COPYRIGHT **********************************
* File Name : myalgorithm.h
* Author : 混分巨兽龙某某
* Version : V1.0.0
* Data : 2024/04/12
* Contact : QQ:1178305328
* Description : This blog compiled optimization algorithm code
***********************************************************************************/
#ifndef __MYALGORITHM_H
#define __MYALGORITHM_H
/* 优化三角函数 */
float my_sin(float x, int n);
float my_cos(float x, int n);
float arctan(float x);
float arcsin(float x);
/* 优化快速开平方根倒数 */
float Q_rsqrt(float number);
#endif
复制代码
myalgorithm.c:
/********************************* (C) COPYRIGHT *********************************** File Name : myalgorithm.c* Author : 混分巨兽龙某某* Version : V1.0.0* Data : 2024/04/12* Contact : QQ:1178305328* Description : This blog compiled optimization algorithm code***********************************************************************************/#include "myalgorithm.h"#include "math.h"/* PI变量 */float M_PI = 3.14159265358;const float PI_2 = 1.570796f;/**
* @brief 利用泰勒级数计算sin(x)的近似值
* @param x: 计算的弧度
* @param n: 泰勒级数的项数
* @retval sin函数数值
*/
float my_sin(float x,int n)
{
float term = x; // 第一项是 x
float sin_x = 0.0; // sin(x)的累加结果
for (int i = 1; i <= n; i++) {
sin_x += term; // 累加当前项
term *= -x * x / ((2 * i) * (2 * i + 1)); // 计算下一项
}
return sin_x;
}/**
* @brief 利用泰勒级数计算cos(x)的近似值
* @param x: 计算的弧度
* @param n: 泰勒级数的项数
* @retval cos函数数值
*/
float my_cos(float x,int n)
{
return my_sin(x+M_PI/2,n);//奇变偶不变,符号看象限
}/**
* @brief 利用反正切麦克劳林展开式求解arctan
* @param x: 计算的数值,范围(-1,1)
* @retval arctan函数求解的弧度
* @note 阶数越高,值越准确 70°以内是准确的
*/
float arctan(float x)
{
float t = x;
float result = 0;
float X2 = x * x;
unsigned char cnt = 1;
do{
result += t / ((cnt << 1) - 1);
t = -t;
t *= X2;
cnt++;
}while(cnt <= 6); //仅计算前6项
return result;
}/**
* @brief 利用反正切麦克劳林展开式求解arcsin
* @param x: 计算的数值,范围(-1,1)
* @retval arcsin函数求解的弧度
* @note 阶数越高,值越准确 42°以内是准确的
*/
float arcsin(float x)
{
float d=1;
float t=x;
unsigned char cnt = 1;
float result = 0;
float X2 = x*x;
if (x >= 1.0f)
{
return PI_2;
}
if (x <= -1.0f)
{
return -PI_2;
}
do
{
result += t / (d * ((cnt << 1) - 1));
t *= X2 * ((cnt << 1) - 1);//
d *= (cnt << 1);//2 4 6 8 10 ...
cnt++;
}while(cnt <= 6);
return result;
}/** * @brief 快速盘算平方根倒数数值 * @param x: 盘算的弧度 * @retval 目的数值 */float Q_rsqrt(float number){ long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; i = 0x5f3759df - ( i >> 1 ); y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration (第一次牛顿迭代) return y;}
复制代码
六、代码开源
代码地址:
【免费】基于STM32的各种数学函数优化盘算方法代码资源-CSDN文库
假如积分不够的朋侪,点波关注,批评区留下邮箱,作者无偿提供源码和后续问题解答。求求啦关注一波吧 !!!
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
欢迎光临 qidao123.com技术社区-IT企服评测·应用市场 (https://dis.qidao123.com/)
Powered by Discuz! X3.4