ToB企服应用市场:ToB评测及商务社交产业平台
标题:
使用java远程提交flink任务到yarn集群
[打印本页]
作者:
缠丝猫
时间:
2024-7-27 00:38
标题:
使用java远程提交flink任务到yarn集群
使用java远程提交flink任务到yarn集群
背景
由于业务需要,使用命令行的方式提交flink任务比较麻烦,要么将后端任务部署到大数据集群,要么弄一个提交机,感觉都不是很离线。颠末一些调研,发现可以实现远程的任务发布。接下来就记录一下实现过程。这里用flink on yarn 的Application模式实现
情况预备
大数据集群,只要有hadoop就行
后端服务器,linux mac都行,windows不行
正式开始
1. 上传flink jar包到hdfs
去flink官网下载你需要的版本,我这里用的是flink-1.18.1,把flink lib目次下的jar包传到hdfs中。
其中flink-yarn-1.18.1.jar需要各人本身去maven仓库下载。
2. 编写一段flink代码
随便写一段flink代码就行,我们目的是测试
package com.azt;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Random;
import java.util.concurrent.TimeUnit;
public class WordCount {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> source = env.addSource(new SourceFunction<String>() {
@Override
public void run(SourceContext<String> ctx) throws Exception {
String[] words = {"spark", "flink", "hadoop", "hdfs", "yarn"};
Random random = new Random();
while (true) {
ctx.collect(words[random.nextInt(words.length)]);
TimeUnit.SECONDS.sleep(1);
}
}
@Override
public void cancel() {
}
});
source.print();
env.execute();
}
}
复制代码
3. 打包第二步的代码,上传到hdfs
4. 拷贝配置文件
拷贝flink conf下的所有文件到java项目的resource中
拷贝hadoop配置文件到到java项目的resource中
具体看截图
5. 编写java远程提交任务的程序
这一步有个留意的地方就是,如果你跟我一样是windows电脑,那么本地用idea提交会报错;如果你是mac或者linux,那么可以直接在idea中提交任务。
package com.test;
import org.apache.flink.client.deployment.ClusterDeploymentException;
import org.apache.flink.client.deployment.ClusterSpecification;
import org.apache.flink.client.deployment.application.ApplicationConfiguration;
import org.apache.flink.client.program.ClusterClient;
import org.apache.flink.client.program.ClusterClientProvider;
import org.apache.flink.configuration.*;
import org.apache.flink.runtime.client.JobStatusMessage;
import org.apache.flink.yarn.YarnClientYarnClusterInformationRetriever;
import org.apache.flink.yarn.YarnClusterDescriptor;
import org.apache.flink.yarn.YarnClusterInformationRetriever;
import org.apache.flink.yarn.configuration.YarnConfigOptions;
import org.apache.flink.yarn.configuration.YarnDeploymentTarget;
import org.apache.flink.yarn.configuration.YarnLogConfigUtil;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.yarn.api.records.ApplicationId;
import org.apache.hadoop.yarn.client.api.YarnClient;
import org.apache.hadoop.yarn.conf.YarnConfiguration;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CompletableFuture;
import static org.apache.flink.configuration.MemorySize.MemoryUnit.MEGA_BYTES;
/**
* @date :2021/5/12 7:16 下午
*/
public class Main {
public static void main(String[] args) throws Exception {
///home/root/flink/lib/lib
System.setProperty("HADOOP_USER_NAME","root");
// String configurationDirectory = "C:\\project\\test_flink_mode\\src\\main\\resources\\conf";
String configurationDirectory = "/export/server/flink-1.18.1/conf";
org.apache.hadoop.conf.Configuration conf = new org.apache.hadoop.conf.Configuration();
conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
conf.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName());
String flinkLibs = "hdfs://node1.itcast.cn/flink/lib";
String userJarPath = "hdfs://node1.itcast.cn/flink/user-lib/original.jar";
String flinkDistJar = "hdfs://node1.itcast.cn/flink/lib/flink-yarn-1.18.1.jar";
YarnClient yarnClient = YarnClient.createYarnClient();
YarnConfiguration yarnConfiguration = new YarnConfiguration();
yarnClient.init(yarnConfiguration);
yarnClient.start();
YarnClusterInformationRetriever clusterInformationRetriever = YarnClientYarnClusterInformationRetriever
.create(yarnClient);
//获取flink的配置
Configuration flinkConfiguration = GlobalConfiguration.loadConfiguration(
configurationDirectory);
flinkConfiguration.set(CheckpointingOptions.INCREMENTAL_CHECKPOINTS, true);
flinkConfiguration.set(
PipelineOptions.JARS,
Collections.singletonList(
userJarPath));
YarnLogConfigUtil.setLogConfigFileInConfig(flinkConfiguration,configurationDirectory);
Path remoteLib = new Path(flinkLibs);
flinkConfiguration.set(
YarnConfigOptions.PROVIDED_LIB_DIRS,
Collections.singletonList(remoteLib.toString()));
flinkConfiguration.set(
YarnConfigOptions.FLINK_DIST_JAR,
flinkDistJar);
//设置为application模式
flinkConfiguration.set(
DeploymentOptions.TARGET,
YarnDeploymentTarget.APPLICATION.getName());
//yarn application name
flinkConfiguration.set(YarnConfigOptions.APPLICATION_NAME, "jobname");
//设置配置,可以设置很多
flinkConfiguration.set(JobManagerOptions.TOTAL_PROCESS_MEMORY, MemorySize.parse("1024",MEGA_BYTES));
flinkConfiguration.set(TaskManagerOptions.TOTAL_PROCESS_MEMORY, MemorySize.parse("1024",MEGA_BYTES));
flinkConfiguration.set(TaskManagerOptions.NUM_TASK_SLOTS, 4);
flinkConfiguration.setInteger("parallelism.default", 4);
ClusterSpecification clusterSpecification = new ClusterSpecification.ClusterSpecificationBuilder()
.createClusterSpecification();
// 设置用户jar的参数和主类
ApplicationConfiguration appConfig = new ApplicationConfiguration(args,"com.azt.WordCount");
YarnClusterDescriptor yarnClusterDescriptor = new YarnClusterDescriptor(
flinkConfiguration,
yarnConfiguration,
yarnClient,
clusterInformationRetriever,
true);
ClusterClientProvider<ApplicationId> clusterClientProvider = null;
try {
clusterClientProvider = yarnClusterDescriptor.deployApplicationCluster(
clusterSpecification,
appConfig);
} catch (ClusterDeploymentException e){
e.printStackTrace();
}
ClusterClient<ApplicationId> clusterClient = clusterClientProvider.getClusterClient();
System.out.println(clusterClient.getWebInterfaceURL());
ApplicationId applicationId = clusterClient.getClusterId();
System.out.println(applicationId);
Collection<JobStatusMessage> jobStatusMessages = clusterClient.listJobs().get();
int counts = 30;
while (jobStatusMessages.size() == 0 && counts > 0) {
Thread.sleep(1000);
counts--;
jobStatusMessages = clusterClient.listJobs().get();
if (jobStatusMessages.size() > 0) {
break;
}
}
if (jobStatusMessages.size() > 0) {
List<String> jids = new ArrayList<>();
for (JobStatusMessage jobStatusMessage : jobStatusMessages) {
jids.add(jobStatusMessage.getJobId().toHexString());
}
System.out.println(String.join(",",jids));
}
}
}
复制代码
由于我这里是windows电脑,以是我打包放到服务器上去运行
执行命令 :
java -cp test_flink_mode-1.0-SNAPSHOT.jar com.test.Main
不出以外的话,会打印如下日志
log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
http://node2:33811
application_1715418089838_0017
6d4d6ed5277a62fc9a3a274c4f34a468
复制代码
复制打印的url毗连,就可以打开flink的webui了,在yarn的前端页面中也可以看到flink任务。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/)
Powered by Discuz! X3.4