ToB企服应用市场:ToB评测及商务社交产业平台
标题:
深入明白ConcurrentHashMap
[打印本页]
作者:
何小豆儿在此
时间:
2024-9-19 21:10
标题:
深入明白ConcurrentHashMap
HashMap为什么线程不安全
put的不安全
由于多线程对HashMap进行put操作,调用了HashMap的putVal(),具体原因:
假设两个线程A、B都在进行put操作,而且hash函数计算出的插入下标是相同的;
当线程A执行完第六行由于时间片耗尽导致被挂起,而线程B得到时间片后在该下标处插入了元素,完成了正常的插入;
接着线程A获得时间片,由于之前已经进行了hash碰撞的判定,所有此时不会再进行判定,而是直接进行插入;
终极就导致了线程B插入的数据被线程A覆盖了,从而线程不安全。
代码的第38行处有个++size,线程A、B,这两个线程同时进行put操作时,假设当前HashMap的zise大小为10;
当线程A执行到第38行代码时,从主内存中获得size的值为10后准备进行+1操作,但是由于时间片耗尽只好让出CPU;
接着线程B拿到CPU后从主内存中拿到size的值10进行+1操作,完成了put操作并将size=11写回主内存;
接着线程A再次拿到CPU并继承执行(此时size的值仍为10),当执行完put操作后,还是将size=11写回内存;
此时,线程A、B都执行了一次put操作,但是size的值只增长了1,所有说还是由于数据覆盖又导致了线程不安全。
1 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
2 boolean evict) {
3 Node <K, V> [] tab; Node <K, V> p; int n, i;
4 if ((tab = table) == null || (n = tab.length) == 0)
5 n = (tab = resize()).length;
6 if ((p = tab[i = (n - 1) & hash]) == null) //
tab[i] = newNode(hash, key, value, null);
else {
Node < K, V > e;
K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode <K, V> ) p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0;; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
38 if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
复制代码
扩容不安全
Java7
中头插法扩容会导致死循环和数据丢失,Java8中将头插法改为尾插法后死循环和数据丢失已经得到解决,但仍然有数据覆盖的题目。
这是jdk7中存在的题目
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry <K, V> e: table) {
while (null != e) {
Entry <K, V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
复制代码
transfer过程如下:
对索引数组中的元素遍历
对链表上的每一个节点遍历:用 next 取得要转移那个元素的下一个,将 e 转移到新 Hash 表的头部,使用头插法插入节点。
循环2,直到链表节点全部转移
循环1,直到所有索引数组全部转移
注意 e.next = newTable
和newTable
= e 这两行代码,就会导致链表的顺序翻转。
扩容操作就是新天生一个新的容量的数组,然后对原数组的所有键值对重新进行计算和写入新的数组,之后指向新天生的数组。当多个线程同时检测到总数目超过门限值的时候就会同时调用resize操作,各自天生新的数组并rehash后赋给该map底层的数组table,效果终极只有末了一个线程天生的新数组被赋给table变量,其他线程的均会丢失。而且当某些线程已经完成赋值而其他线程刚开始的时候,就会用已经被赋值的table作为原始数组,如许也会有题目。
Map m = Collections.synchronizedMap(new LinkedHashMap(...));
复制代码
concurrentHashMap先容
concurrentHashMap是一个支持高并发更新与查询的哈希表(基于HashMap)。
hashtable该类不依赖于synchronization去包管线程操作的安全。Collections.synchronizedMap()也可以将map转成线程安全的。而concurrentHashMap在包管安全的前提下,进行get不需要锁定。
底层源码
put方法
回顾hashMap的put方法过程
计算出key的槽位
根据槽位范例进行操作(链表,红黑树)
根据槽位中成员数目进行数据转换,扩容等操作
如何高效的执行并发操作:根据上面hashMap的数据结构可以直观的看到,如果以整个容器为一个资源进行锁定,那么就变为了串行操作。而根据hash表的特性,具有辩论的操作只会出现在同一槽位,而与其它槽位的操作互不影响。基于此种判定,那么就可以将资源锁粒度缩小到槽位上,如许热点一分散,辩论的概率就大大降低,并发性能就能得到很好的增强。
底层源码:
final V putVal(K key, V value, boolean onlyIfAbsent) {
// key和value如果为null,直接甩异常
if (key == null || value == null) throw new NullPointerException();
// 计算key的hash值,(通过hash值决定Entry存放到数组的哪个索引位置)
int hash = spread(key.hashCode());
// 暂时当做标识,值为0
int binCount = 0;
// 声明临时变量为tab,tab赋值了table,table就是当前HashMap的数组!这是个死循环
for (Node<K,V>[] tab = table;;) {
// 声明了一堆变量
//f-当前索引位置的数据
//n-数组长度
//i-数据要存储的索引位置
//fh-桶位置数据的hash值
Node<K,V> f; int n, i, fh;
// 如果tab为null,或者tab的长度为0
if (tab == null || (n = tab.length) == 0)
// 进来说明数组没有初始化,开始初始化,ConcurrentHashMap要避免并发初始化时造成的问题
tab = initTable();
// tabAt(数组,索引位置),得到这个数组指定索引位置的值,f就是数组的下标位置的值
// 如果f == null
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 进到这,说明索引位置没有值,基于CAS的方式将当前的key-value存储到这个索引位置
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
// 如果CAS成功,添加数据成功(添加到了数组上),如果走false,继续上述操作,尝试其他内容
break; // no lock when adding to empty bin
}
// f是经过上述if得到的索引位置的值,当前key-value的hash是否为MOVED,如果相等,证明当前位置正在扩容
else if ((fh = f.hash) == MOVED)//MOVED表示正在扩容
// 如果正在扩容,帮你扩容(构建长度为原来2倍的数组,并且将老数组的值移动到新数组),帮助扩容的操作是迁移数据的操作
tab = helpTransfer(tab, f);
else {
// 第一个判断:数组初始化了么?
// 第二个判断:数组指定的位置有值么?
// 第三个判断:现在正在扩容么?
// 这个else就是第四个判断:是否需要将数据挂到链表上,或者添加到红黑树中?(出现了Hash冲突(碰撞))
V oldVal = null;
// 加个锁,锁的是f(f是数组的下标位置的值),也就是在这,锁住了这个桶
synchronized (f) {
// 拿到i索引位置的数据,判断与锁住的f是不是同一个
if (tabAt(tab, i) == f) {
// 如果fh 大于等于 0(判断hash值是否大于等于0),说明是链表
if (fh >= 0) {
// 将标识修改为1
binCount = 1;
// 开始循环,为了将插入的值挂到链表的最后面
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash && // 判断指向的节点的key是否等于当前要插入的节点的key
((ek = e.key) == key || // 判断指向的节点的key是否等于当前要插入的节点的key
(ek != null && key.equals(ek)))) { // 指向的节点的key是否域当前的key相等
// 说明当前是修改操作
oldVal = e.val;
if (!onlyIfAbsent) // onlyIfAbsent如果为true,就什么事都不做
e.val = value; // 修改值
break;
}
// 是正常的添加操作
Node<K,V> pred = e;
// 如果节点的next为null,说明到链表的最后一个节点了,添加到链表的末尾
if ((e = e.next) == null) {
// 将当前值添加到链表的最后一个节点的next指向
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 判断当前位置的桶数据是否是树
else if (f instanceof TreeBin) {
Node<K,V> p;
// 标记修改为2
binCount = 2;
// 调用putTreeVal扔到红黑树
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
// 进到if说明是覆盖操作
oldVal = p.val;
if (!onlyIfAbsent) // 根据判断决定,是否修改数据
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)//链表长度大等于8
treeifyBin(tab, i);//尝试转红黑树
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
复制代码
计算hash值的spread方法
static final int spread(int h) {
// (h ^ (h >>> 16)):与HashMap的散列算法一样,让高16位也参与运算
// Entry存放的索引位置 = (数组长度 - 1) & hash
// & HASH_BITS的运算目的是为了保证等到的hash值,一定是正数,因为最高位符号位100%是0
// HASH_BITS = 0x7fffffff
// 因为hash值为负数时,有特殊的含义,
return (h ^ (h >>> 16)) & HASH_BITS;
}
//hash值为负数时的特殊含义
static final int MOVED = -1; // 当前索引位置的数据正在扩容
static final int TREEBIN = -2; // 当前索引位置下面不是链表,是红黑树
static final int RESERVED = -3; // 当前索引位置被临时占用,compute方法会涉及
复制代码
初始化 initTable方法
/* sizeCtl = -1:说明当前ConcurrentHashMap正在初始化!!!
sizeCtl = -N:说明当前ConcurrentHashMap正在扩容!!!
sizeCtl = 0:默认初始值,当前ConcurrentHashMap还没有初始化
sizeCtl > 0:如果已经初始化过了,sizeCtl标识扩容的阈值, 如果没有初始化,sizeCtl标识数组的初始化容量 */
private final Node<K,V>[] initTable() {
// 声明一些变量
Node<K,V>[] tab; int sc;
// tab变量是HashMap的数组, 数组长度为null,或者数组的长度为0,说明数组还没有初始化!
while ((tab = table) == null || tab.length == 0) {
// 将sizeCtl赋值给sc,如果进到if中,说明正在扩容或者正在初始化
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// 以CAS的方式,尝试将sizeCtl从之前oldValue替换为-1,为了标识我当前ConcurrentHashMap正在初始化
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 开始扩容
try {
//DCL思想
// table是不是还是null,或者长度还是0
if ((tab = table) == null || tab.length == 0) {
// 声明n,sc是sizeCtl,默认sizectl为0,但是现在正在初始化,我把sizeCtl改为了-1,但是sc还是0
// sc如果为0,不大于0,所以为DEFAULT_CAPACITY,16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
// 创建数组!!!
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
// 将初始化的nt数组赋值给ConcurrentHashMap的table
table = tab = nt;
// 默认sc = 12,为扩容阈值
sc = n - (n >>> 2);
}
} finally {
// 将阈值赋值给sizeCtl,到这初始化完毕
sizeCtl = sc;
}
break;
}
}
return tab;
}
复制代码
链表转红黑树: treeifyBin
在 put 源码分析也说过,treeifyBin 不一定就会进行红黑树转换,也可能是仅仅做数组扩容。
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
// MIN_TREEIFY_CAPACITY 为 64
// 所以,如果数组长度小于 64 的时候,其实也就是 32 或者 16 或者更小的时候,会进行数组扩容
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
// 后面我们再详细分析这个方法
tryPresize(n << 1);
// b 是头节点
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
// 加锁
synchronized (b) {
if (tabAt(tab, index) == b) {
// 下面就是遍历链表,建立一颗红黑树
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
// 将红黑树设置到数组相应位置中
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
复制代码
扩容: tryPresize
如果说 Java8 ConcurrentHashMap 的源码不简单,那么说的就是扩容操作和迁徙操作。
这个方法要完完全全看懂还需要看之后的 transfer 方法。
这里的扩容也是做翻倍扩容的,扩容后数组容量为原来的 2 倍。
[code]// 起首要说明的是,方法参数 size 传进来的时候就已经翻了倍了private final void tryPresize(int size) { // c: size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node[] tab = table; int n; // 这个 if 分支和之前说的初始化数组的代码基本上是一样的,在这里,可以不用管这块代码 if (tab == null || (n = tab.length) == 0) { n = (sc > c) ? sc : c; if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if (table == tab) { @SuppressWarnings("unchecked") Node[] nt = (Node[])new Node[n]; table = nt; sc = n - (n >>> 2); // 0.75 * n } } finally { sizeCtl = sc; } } } else if (c = MAXIMUM_CAPACITY) break; else if (tab == table) { int rs = resizeStamp(n); if (sc < 0) { Node[] nt; if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex 3)/NCPU,最小值是 16 // stride 可以明白为”步长“,有 n 个位置是需要进行迁徙的, // 将这 n 个任务分为多个任务包,每个任务包有 stride 个任务 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // subdivide range // 如果 nextTab 为 null,先进行一次初始化 // 前面说了,外围会包管第一个发起迁徙的线程调用此方法时,参数 nextTab 为 null // 之后参与迁徙的线程调用此方法时,nextTab 不会为 null if (nextTab == null) { try { // 容量翻倍 Node[] nt = (Node[])new Node[n = bound || finishing) advance = false; // 将 transferIndex 值赋给 nextIndex // 这里 transferIndex 一旦小于等于 0,说明原数组的所有位置都有相应的线程去处置惩罚了 else if ((nextIndex = transferIndex) stride ? nextIndex - stride : 0))) { // 看括号中的代码,nextBound 是这次迁徙任务的边界,注意,是从后往前 bound = nextBound; i = nextIndex - 1; advance = false; } } if (i < 0 || i >= n || i + n >= nextn) { int sc; if (finishing) { // 所有的迁徙操作已经完成 nextTable = null; // 将新的 nextTab 赋值给 table 属性,完成迁徙 table = nextTab; // 重新计算 sizeCtl: n 是原数组长度,所以 sizeCtl 得出的值将是新数组长度的 0.75 倍 sizeCtl = (n >> 1); return; } // 之前我们说过,sizeCtl 在迁徙前会设置为 (rs
欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/)
Powered by Discuz! X3.4