n = 2260375559104345425590426977960386256287009777233277062625487017885931446911942921201492850167115455071935831283269948569220356763988762825230315520633702443866690239945242948370781975714325308306543337600783340792458991506685843729962897796956171467876531084194426101796617903015810156717396227079274786269217370618477266867389155551378798713259843750289765858717627925689021561352438080039804957145513478767641674644346609224034274906228784593435462413278410143
e = 3
c = 1683427726786225271109289808778075351906457081282891335272956455076290407290946927840180672315908981114229434899424882579823897506730018911375238394076293908946844135295984336122170362703361647325169444373502665686779049846717305377396296752361918921007897449738856962248716579014267597667341690453460130215215256776249910808564677407383996700090361822122676428069577517468851642648993930679875398568383201032360229083338487146673018350740571719960730053254352184
R.<x> = PolynomialRing(Zmod(n))
for i in range(40):
mhigh = bytes_to_long(flag + b"\x00"*32 + b"}")
f = (mhigh + x)^e - c
res = f.small_roots(X=256^i,beta=0.4,epsilon=0.05)