IT评测·应用市场-qidao123.com技术社区

标题: YOLO11训练本身的数据集(吸烟、跌倒举动检测) [打印本页]

作者: 南七星之家    时间: 2024-10-9 08:45
标题: YOLO11训练本身的数据集(吸烟、跌倒举动检测)



前言

   
  相关先容

   
  前提条件

   
  实验环境

  1. torch==2.0.1
  2. torchvision==0.15.2
  3. onnx==1.14.0
  4. onnxruntime==1.15.1
  5. pycocotools==2.0.7
  6. PyYAML==6.0.1
  7. scipy==1.13.0
  8. onnxsim==0.4.36
  9. onnxruntime-gpu==1.18.0
  10. gradio==4.31.5
  11. opencv-python==4.9.0.80
  12. psutil==5.9.8
  13. py-cpuinfo==9.0.0
  14. huggingface-hub==0.23.2
  15. safetensors==0.4.3
复制代码
安装环境

  1. pip install ultralytics
  2. # 或者
  3. pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快
复制代码


项目地址

   
  Linux

  1. git clone https://github.com/ultralytics/ultralytics.git
  2. cd ultralytics
  3. # conda create -n yolo11 python=3.9
  4. # conda activate yolo11
  5. pip install -r requirements.txt
  6. pip install -e .
复制代码
  1. Cloning into 'ultralytics'...
  2. remote: Enumerating objects: 4583, done.
  3. remote: Counting objects: 100% (4583/4583), done.
  4. remote: Compressing objects: 100% (1270/1270), done.
  5. remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
  6. Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
  7. Resolving deltas: 100% (2981/2981), done.
复制代码
Windows

   请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。
  1. cd yolov10
  2. # conda create -n yolo11 python=3.9
  3. # conda activate yolo11
  4. pip install -r requirements.txt
  5. pip install -e .
复制代码
利用YOLO11训练本身的数据集进行吸烟、跌倒举动检测

准备数据

   本文所利用数据集下载地址:https://download.csdn.net/download/FriendshipTang/89862078
  

进行训练

  1. yolo train model=yolo11n.pt data=../datasets/Smoke-Fall-YOLO-datasets/smoke_fall.yaml epochs=100 batch=16 imgsz=640 device=0 workers=0
复制代码



进行预测



  1. yolo predict model=runs\detect\train\weights\best.pt source=test_imgs/
复制代码



进行验证

  1. yolo detect val data=../datasets/Smoke-Fall-YOLO-datasets/smoke_fall.yaml model=runs\detect\train\weights\best.pt batch=16 imgsz=640 device=0
复制代码

参考文献

[1] YOLO11 源代码地址:https://github.com/ultralytics/ultralytics.git
[2] YOLO11 官方文档:https://docs.ultralytics.com/models/yolo11/
   

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。




欢迎光临 IT评测·应用市场-qidao123.com技术社区 (https://dis.qidao123.com/) Powered by Discuz! X3.4