Model | Sequence Classification | Token Classification | Question Answering | Text Generation |
ALBERT | ✅ | ✅ | ✅ | ❌ |
BART | ✅ | ✅ | ✅ | ✅ |
BERT | ✅ | ✅ | ✅ | ❌ |
BigBird | ✅ | ✅ | ✅ | ❌ |
Blenderbot | ❌ | ❌ | ❌ | ✅ |
Blenderbot-Small | ❌ | ❌ | ❌ | ✅ |
ChineseBert | ✅ | ✅ | ✅ | ❌ |
ConvBert | ✅ | ✅ | ✅ | ❌ |
CTRL | ✅ | ❌ | ❌ | ❌ |
DistilBert | ✅ | ✅ | ✅ | ❌ |
ELECTRA | ✅ | ✅ | ✅ | ❌ |
ERNIE | ✅ | ✅ | ✅ | ❌ |
ERNIE-CTM | ❌ | ✅ | ❌ | ❌ |
ERNIE-DOC | ✅ | ✅ | ✅ | ❌ |
ERNIE-GEN | ❌ | ❌ | ❌ | ✅ |
ERNIE-GRAM | ✅ | ✅ | ✅ | ❌ |
ERNIE-M | ✅ | ✅ | ✅ | ❌ |
FNet | ✅ | ✅ | ✅ | ❌ |
Funnel | ✅ | ✅ | ✅ | ❌ |
GPT | ✅ | ✅ | ❌ | ✅ |
LayoutLM | ✅ | ✅ | ❌ | ❌ |
LayoutLMV2 | ❌ | ✅ | ❌ | ❌ |
LayoutXLM | ❌ | ✅ | ❌ | ❌ |
Luke | ❌ | ✅ | ✅ | ❌ |
MBart | ✅ | ❌ | ✅ | ❌ |
MegatronBert | ✅ | ✅ | ✅ | ❌ |
MobileBert | ✅ | ❌ | ✅ | ❌ |
MPNet | ✅ | ✅ | ✅ | ❌ |
NeZha | ✅ | ✅ | ✅ | ❌ |
PPMiniLM | ✅ | ❌ | ❌ | ❌ |
ProphetNet | ❌ | ❌ | ❌ | ✅ |
Reformer | ✅ | ❌ | ✅ | ❌ |
RemBert | ✅ | ✅ | ✅ | ❌ |
RoBERTa | ✅ | ✅ | ✅ | ❌ |
RoFormer | ✅ | ✅ | ✅ | ❌ |
SKEP | ✅ | ✅ | ❌ | ❌ |
SqueezeBert | ✅ | ✅ | ✅ | ❌ |
T5 | ❌ | ❌ | ❌ | ✅ |
TinyBert | ✅ | ❌ | ❌ | ❌ |
UnifiedTransformer | ❌ | ❌ | ❌ | ✅ |
XLNet | ✅ | ✅ | ✅ | ❌ |
Model | Weight name | language | Details of the model |
BERT | bert-base-uncased | English | 12-layer, 768-hidden, 12-heads, 110M parameters. |
BERT | bert-base-chinese | Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. |
Ernie | ernie-1.0-base-zh | Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. |
Ernie | ernie-3.0-base-zh | Chinese | 12-layer, 768-hidden, 12-heads, 118M parameters. |
RoBERTa | hfl/roberta-wwm-ext | Chinese | 12-layer, 768-hidden, 12-heads, 102M parameters. |
ELECTRA | chinese-electra-base | Chinese | 12-layer, 768-hidden, 12-heads, 102M parameters. |
Reformer | reformer-enwik8 | English | 12-layer, 1024-hidden, 8-heads, 148M parameters. |
GPT | gpt-cpm-large-cn | Chinese | 32-layer, 2560-hidden, 32-heads, 2.6B parameters. Trained on Chinese text. |
TinyBERT | tinybert-4l-312d-zh | Chinese | 4-layer, 312-hidden, 12-heads, 14.5M parameters. The TinyBert model distilled from the BERT model bert-base-uncased |
欢迎光临 ToB企服应用市场:ToB评测及商务社交产业平台 (https://dis.qidao123.com/) | Powered by Discuz! X3.4 |