使用gpu构建llama.cpp
更多详情拜见https://github.com/abetlen/llama-cpp-python,官网网站会随着版本迭代更新。
下载并进入llama.cpp
地址:https://github.com/ggerganov/llama.cpp
可以下载到当地再传到服务器上
- git clone https://github.com/ggerganov/llama.cpp
- cd llama.cpp
复制代码 编译源码(make
)
天生./main和./quantize等二进制文件。详见:https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md
使用CPU
使用GPU
大概出现的报错及办理方法
I ccache not found. Consider installing it for faster compilation.
- sudo apt-get install ccache
复制代码 Makefile:1002: *** I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via environment variable CUDA_DOCKER_ARCH, e.g. by running "export CUDA_DOCKER_ARCH=compute_XX" on Unix-like systems, where XX is the minimum compute capability that the code needs to run on. A list with compute capabilities can be found here: https://developer.nvidia.com/cuda-gpus . Stop.
阐明cuda版本太低,假如不是自己下载好的,参考该文章nvcc -V 显示的cuda版本和实际版本不同等更换
NOTICE: The 'server' binary is deprecated. Please use 'llama-server' instead.
提示:随版本迭代,下令大概会失效
正确效果
内容很长,只截取了一部门
调用大模型
安装llama.cpp,比力慢
- CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python
复制代码 调用
- from langchain_community.chat_models import ChatLlamaCpp
- from langchain_community.llms import LlamaCpp
- local_model = "/data/pretrained/gguf/Meta-Llama-3-8B-Instruct-Q5_K_M.gguf"
- llm = ChatLlamaCpp(
- seed=1,
- temperature=0.5,
- model_path=local_model,
- n_ctx=8192,
- n_gpu_layers=64,
- n_batch=12, # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
- max_tokens=8192,
- repeat_penalty=1.5,
- top_p=0.5,
- f16_kv=False,
- verbose=True,
- )
- messages = [
- (
- "system",
- "You are a helpful assistant that translates English to Chinese. Translate the user sentence.",
- ),
- ("human",
- "OpenAI has a tool calling API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool. tool-calling is extremely useful for building tool-using chains and agents, and for getting structured outputs from models more generally."),
- ]
- ai_msg = llm.invoke(messages)
- print(ai_msg.content)
复制代码 正确打印中存在如下内容,阐明找到gpu
- ggml_cuda_init: found 2 CUDA devices:
- Device 0: 你的gpu型号, compute capability gpu计算能力, VMM: yes
- Device 1: 你的gpu型号, compute capability gpu计算能力, VMM: yes
- llm_load_tensors: offloading 32 repeating layers to GPU
- llm_load_tensors: CPU buffer size = 344.44 MiB
- llm_load_tensors: CUDA0 buffer size = 2932.34 MiB
- llm_load_tensors: CUDA1 buffer size = 2183.15 MiB
复制代码 构建自己的gguf
很多llm没有gguf格式,但有着自己的环境要求,llama.cpp需要举行统一,使用gguf文件格式(量化模型 quantizing model)。该过程需要再之前下载的llama.cpp文件夹中操作。
- python convert_hf_to_gguf.py --outfile /data/pretrained/gguf/meta-llama-3.1-8b-instruct.gguf /data/pretrained/Meta-Llama-3.1-8B-Instruct
复制代码 大概出现的错误
- AttributeError: module 'torch' has no attribute 'float8_e4m3fn'
复制代码 这是由于torch版本较低导致,可以直接在源码中举行解释。(convert-hf-to-gguf.py文件第4226行)
- _dtype_str_map: dict[str, torch.dtype] = {
- "F64": torch.float64,
- "F32": torch.float32,
- "BF16": torch.bfloat16,
- "F16": torch.float16,
- # "U64": torch.uint64,
- "I64": torch.int64,
- # "U32": torch.uint32,
- "I32": torch.int32,
- # "U16": torch.uint16,
- "I16": torch.int16,
- "U8": torch.uint8,
- "I8": torch.int8,
- "BOOL": torch.bool,
- # "F8_E4M3": torch.float8_e4m3fn,
- # "F8_E5M2": torch.float8_e5m2,
- }
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |