1. 官网地址
https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html
FaceDetectorYN是opencv内置的一个人脸检测方法,利用的是yunet。
这是一个DNN-based face detector.模型的下载地址:
https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet
2. 怎样利用
2.1.到opencv_zoo下载模型文件和代码
2.2. 下载文件展示
2.3. 修改了demo支持读取视频文件,默认是图片和摄像头
- # This file is part of OpenCV Zoo project.
- # It is subject to the license terms in the LICENSE file found in the same directory.
- #
- # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
- # Third party copyrights are property of their respective owners.
- import argparse
- import numpy as np
- import cv2 as cv
- # Check OpenCV version
- opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
- assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
- "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
- from yunet import YuNet
- # Valid combinations of backends and targets
- backend_target_pairs = [
- [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
- [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
- [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
- [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
- [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
- ]
- parser = argparse.ArgumentParser(
- description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
- parser.add_argument('--input', '-i', type=str,
- help='Usage: Set input to a certain image, omit if using camera.')
- parser.add_argument('--model', '-m', type=str, default='face_detection_yunet_2023mar.onnx',
- help="Usage: Set model type, defaults to 'face_detection_yunet_2023mar.onnx'.")
- parser.add_argument('--backend_target', '-bt', type=int, default=0,
- help='''Choose one of the backend-target pair to run this demo:
- {:d}: (default) OpenCV implementation + CPU,
- {:d}: CUDA + GPU (CUDA),
- {:d}: CUDA + GPU (CUDA FP16),
- {:d}: TIM-VX + NPU,
- {:d}: CANN + NPU
- '''.format(*[x for x in range(len(backend_target_pairs))]))
- parser.add_argument('--conf_threshold', type=float, default=0.7,
- help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
- parser.add_argument('--nms_threshold', type=float, default=0.3,
- help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.')
- parser.add_argument('--top_k', type=int, default=5000,
- help='Usage: Keep top_k bounding boxes before NMS.')
- parser.add_argument('--save', '-s', action='store_true',
- help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
- parser.add_argument('--vis', '-v', action='store_true',
- help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
- parser.add_argument('--camera_or_video', '-c', default='123.mov',
- help='Usage: Specify to open camera or video')
- args = parser.parse_args()
- def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 255, 255), fps=None):
- output = image.copy()
- landmark_color = [
- (0, 0, 255), # right eye
- (0, 0, 255), # left eye
- (0, 255, 0), # nose tip
- (255, 0, 255), # right mouth corner
- (0, 255, 255) # left mouth corner
- ]
- if fps is not None:
- cv.putText(output, 'FPS: {:.2f}'.format(fps), (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.5, text_color)
- for det in results:
- bbox = det[0:4].astype(np.int32)
- cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0] + bbox[2], bbox[1] + bbox[3]), box_color, 2)
- conf = det[-1]
- cv.putText(output, '{:.4f}'.format(conf), (bbox[0], bbox[1] + bbox[3] // 2), cv.FONT_HERSHEY_DUPLEX, 1.5, text_color)
- landmarks = det[4:14].astype(np.int32).reshape((5, 2))
- for idx, landmark in enumerate(landmarks):
- cv.circle(output, landmark, 4, landmark_color[idx], 10)
- return output
- if __name__ == '__main__':
- backend_id = backend_target_pairs[args.backend_target][0]
- target_id = backend_target_pairs[args.backend_target][1]
- # Instantiate YuNet
- model = YuNet(modelPath=args.model,
- inputSize=[320, 320],
- confThreshold=args.conf_threshold,
- nmsThreshold=args.nms_threshold,
- topK=args.top_k,
- backendId=backend_id,
- targetId=target_id)
- # If input is an image
- if args.input is not None:
- image = cv.imread(args.input)
- h, w, _ = image.shape
- # Inference
- model.setInputSize([w, h])
- results = model.infer(image)
- # Print results
- print('{} faces detected.'.format(results.shape[0]))
- for idx, det in enumerate(results):
- print(
- '{}: {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f}'.format(
- idx, *det[:-1])
- )
- # Draw results on the input image
- image = visualize(image, results)
- # Save results if save is true
- if args.save:
- print('Resutls saved to result.jpg\n')
- cv.imwrite('result.jpg', image)
- # Visualize results in a new window
- if args.vis:
- cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
- cv.imshow(args.input, image)
- cv.waitKey(0)
- else: # Omit input to call default camera
- deviceId = args.camera_or_video
- cap = cv.VideoCapture(int(deviceId) if deviceId.isdigit() else deviceId)
- w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
- h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
- model.setInputSize([w, h])
- fps = int(cap.get(cv.CAP_PROP_FPS))
- # 定义视频编码器和创建VideoWriter对象
- fourcc = cv.VideoWriter_fourcc(*'mp4v') # 或者使用 'XVID'
- out = cv.VideoWriter('output.mp4', fourcc, fps, (w, h))
- tm = cv.TickMeter()
- while cv.waitKey(1) < 0:
- # Inference
- tm.start()
- hasFrame, frame = cap.read()
- if not hasFrame:
- print('No frames grabbed!')
- break
- results = model.infer(frame) # results is a tuple
- tm.stop()
- # Draw results on the input image
- frame = visualize(frame, results, fps=tm.getFPS())
- # Visualize results in a new Window
- cv.imshow('YuNet face detection', frame)
- # tm.reset()
- # 写入视频文件
- out.write(frame)
- out.release()
- cap.release()
- cv.destroyAllWindows()
复制代码 ## 2.4 效果展示
吕一_faces_detection
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |