- import cv2
- import numpy as np
- from osgeo import gdal
- # 定义 Gabor 滤波器的参数
- kSize = 31 # 滤波器核的大小
- g_sigma = 3.0 # 高斯包络的标准差
- g_theta = np.pi / 4 # Gabor 函数的方向
- g_lambda = 10.0 # 正弦波的波长
- g_gamma = 0.5 # 空间纵横比
- g_psi = np.pi / 2 # 相位偏移
- # 生成 Gabor 滤波器核
- kernel = cv2.getGaborKernel((kSize, kSize), g_sigma, g_theta, g_lambda, g_gamma, g_psi, ktype=cv2.CV_32F)
- # 使用gdal读取遥感图像
- dataset = gdal.Open("1.tif")
- image = dataset.ReadAsArray().transpose((1, 2, 0)) # 将波段维度转置到最后
- # 获取图像的波段数
- num_bands = image.shape[2]
- # 初始化处理后的多波段图像
- filtered_image = np.zeros_like(image, dtype=np.float32)
- # 遍历每个波段
- for band in range(num_bands):
- # 提取当前波段
- band_image = image[:, :, band]
- # 应用 Gabor 滤波器
- filtered_band_image = cv2.filter2D(band_image, cv2.CV_32F, kernel)
- # 将处理后的波段放回结果图像中
- filtered_image[:, :, band] = filtered_band_image
- # 将处理后的图像转换为合适的数据类型
- filtered_image = np.clip(filtered_image, 0, 255).astype(np.uint8)
- # 保存结果
- driver = gdal.GetDriverByName('GTiff')
- out_dataset = driver.Create('gaofen2_image.tif', dataset.RasterXSize, dataset.RasterYSize, num_bands, gdal.GDT_Byte)
- out_dataset.SetProjection(dataset.GetProjection())
- out_dataset.SetGeoTransform(dataset.GetGeoTransform())
- for band in range(num_bands):
- out_band = out_dataset.GetRasterBand(band + 1)
- out_band.WriteArray(filtered_image[:, :, band])
- out_dataset.FlushCache()
- # 关闭数据集
- dataset = None
- out_dataset = None
复制代码

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |