疫情尚未结束,我们需要做好自己,时刻防范,不给别人添麻烦。
今天我们来尝试用Python抓取世界疫情,实现可视化地图展示。
话不多说直接开搞!
采集数据
1、数据来源
数据来源于TX新闻,链接展示不了,就只贴图了。

2、模块
- import requests
- import csv
- # Python学习交流君羊:279199867
复制代码
requests 发送请求模块, 是第三方模块,需要手动安装。
win + r输入cmd按回车打开命令提示符窗口,使用pip安装
csv 是内置模块,无需安装。
3、代码展示
获取网页url ,我这里网址屏蔽了,不然不给过。- url = 'https://****com/newsqa/v1/automation/modules/list?modules=FAutoCountryConfirmAdd,WomWorld,WomAboard'
复制代码
发送请求- response = requests.post(url)
复制代码
获取数据- json_data = response.json()
复制代码
解析数据- WomAboard = json_data['data']['WomAboard']
- for i in range(0, len(WomAboard)):
- name = WomAboard[i]['name']
- confirm = WomAboard[i]['confirm']
- confirmAdd = WomAboard[i]['confirmAdd']
- heal = WomAboard[i]['heal']
- dead = WomAboard[i]['dead']
- print(name, confirm, confirmAdd, heal, dead)
复制代码
保存数据- f = open('疫情数据.csv', mode='a', encoding='utf-8', newline='')
- csv_writer = csv.writer(f)
- csv_writer.writerow([name, confirm, confirmAdd, heal, dead])
复制代码
4、效果展示
采集过程

保存好的数据

数据可视化
1、效果展示
接下来看看生成好的可视化世界疫情地图

由于地图是动态的,我就直接截图了,大家可以自己实践一下制作地图详细看。
2、代码展示
模块- import pandas as pd # 做表格操作的模块
- from pyecharts.charts import Map # 绘图的模块
- from pyecharts import options as opts
复制代码
导入数据
- df = pd.read_csv('疫情数据.csv')
- name = df['name'].tolist()
- confirm = df['confirm'].tolist()
- print(name)
- print(confirm)
- c = (
- Map(init_opts=opts.InitOpts(width='1400px', height='600px'))
- .add("累计确诊", [list(z) for z in zip(name, confirm)], "world", name_map=name_map, is_map_symbol_show=False)
- .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
- .set_global_opts(
- title_opts=opts.TitleOpts(title="Map-世界地图"),
- visualmap_opts=opts.VisualMapOpts(max_=1000000, is_piecewise=True, pieces=pieces),
- )
- .render("map_world.html")
- )
- # 完整代码及国内疫情数据抓取代码、视频讲解直接在Python学习交流群 279199867 自取即可。
复制代码
国家地区- name_map = {
- 'Singapore Rep.': '新加坡',
- 'Dominican Rep.': '多米尼加',
- 'Palestine': '巴勒斯坦',
- 'Bahamas': '巴哈马',
- 'Timor-Leste': '东帝汶',
- 'Afghanistan': '阿富汗',
- 'Guinea-Bissau': '几内亚比绍',
- "Côte d'Ivoire": '科特迪瓦',
- 'Siachen Glacier': '锡亚琴冰川',
- "Br. Indian Ocean Ter.": '英属印度洋领土',
- 'Angola': '安哥拉',
- 'Albania': '阿尔巴尼亚',
- 'United Arab Emirates': '阿联酋',
- 'Argentina': '阿根廷',
- 'Armenia': '亚美尼亚',
- 'French Southern and Antarctic Lands': '法属南半球和南极领地',
- 'Australia': '澳大利亚',
- 'Austria': '奥地利',
- 'Azerbaijan': '阿塞拜疆',
- 'Burundi': '布隆迪',
- 'Belgium': '比利时',
- 'Benin': '贝宁',
- 'Burkina Faso': '布基纳法索',
- 'Bangladesh': '孟加拉国',
- 'Bulgaria': '保加利亚',
- 'The Bahamas': '巴哈马',
- 'Bosnia and Herz.': '波斯尼亚和黑塞哥维那',
- 'Belarus': '白俄罗斯',
- 'Belize': '伯利兹',
- 'Bermuda': '百慕大',
- 'Bolivia': '玻利维亚',
- 'Brazil': '巴西',
- 'Brunei': '文莱',
- 'Bhutan': '不丹',
- 'Botswana': '博茨瓦纳',
- 'Central African Rep.': '中非共和国',
- 'Canada': '加拿大',
- 'Switzerland': '瑞士',
- 'Chile': '智利',
- 'China': '中国',
- 'Ivory Coast': '象牙海岸',
- 'Cameroon': '喀麦隆',
- 'Dem. Rep. Congo': '刚果(金)',
- 'Congo': '刚果(布)',
- 'Colombia': '哥伦比亚',
- 'Costa Rica': '哥斯达黎加',
- 'Cuba': '古巴',
- 'N. Cyprus': '北塞浦路斯',
- 'Cyprus': '塞浦路斯',
- 'Czech Rep.': '捷克',
- 'Germany': '德国',
- 'Djibouti': '吉布提',
- 'Denmark': '丹麦',
- 'Algeria': '阿尔及利亚',
- 'Ecuador': '厄瓜多尔',
- 'Egypt': '埃及',
- 'Eritrea': '厄立特里亚',
- 'Spain': '西班牙',
- 'Estonia': '爱沙尼亚',
- 'Ethiopia': '埃塞俄比亚',
- 'Finland': '芬兰',
- 'Fiji': '斐',
- 'Falkland Islands': '福克兰群岛',
- 'France': '法国',
- 'Gabon': '加蓬',
- 'United Kingdom': '英国',
- 'Georgia': '格鲁吉亚',
- 'Ghana': '加纳',
- 'Guinea': '几内亚',
- 'Gambia': '冈比亚',
- 'Guinea Bissau': '几内亚比绍',
- 'Eq. Guinea': '赤道几内亚',
- 'Greece': '希腊',
- 'Greenland': '格陵兰',
- 'Guatemala': '危地马拉',
- 'French Guiana': '法属圭亚那',
- 'Guyana': '圭亚那',
- 'Honduras': '洪都拉斯',
- 'Croatia': '克罗地亚',
- 'Haiti': '海地',
- 'Hungary': '匈牙利',
- 'Indonesia': '印度尼西亚',
- 'India': '印度',
- 'Ireland': '爱尔兰',
- 'Iran': '伊朗',
- 'Iraq': '伊拉克',
- 'Iceland': '冰岛',
- 'Israel': '以色列',
- 'Italy': '意大利',
- 'Jamaica': '牙买加',
- 'Jordan': '约旦',
- 'Japan': '日本',
- 'Kazakhstan': '哈萨克斯坦',
- 'Kenya': '肯尼亚',
- 'Kyrgyzstan': '吉尔吉斯斯坦',
- 'Cambodia': '柬埔寨',
- 'Korea': '韩国',
- 'Kosovo': '科索沃',
- 'Kuwait': '科威特',
- 'Lao PDR': '老挝',
- 'Lebanon': '黎巴嫩',
- 'Liberia': '利比里亚',
- 'Libya': '利比亚',
- 'Sri Lanka': '斯里兰卡',
- 'Lesotho': '莱索托',
- 'Lithuania': '立陶宛',
- 'Luxembourg': '卢森堡',
- 'Latvia': '拉脱维亚',
- 'Morocco': '摩洛哥',
- 'Moldova': '摩尔多瓦',
- 'Madagascar': '马达加斯加',
- 'Mexico': '墨西哥',
- 'Macedonia': '马其顿',
- 'Mali': '马里',
- 'Myanmar': '缅甸',
- 'Montenegro': '黑山',
- 'Mongolia': '蒙古',
- 'Mozambique': '莫桑比克',
- 'Mauritania': '毛里塔尼亚',
- 'Malawi': '马拉维',
- 'Malaysia': '马来西亚',
- 'Namibia': '纳米比亚',
- 'New Caledonia': '新喀里多尼亚',
- 'Niger': '尼日尔',
- 'Nigeria': '尼日利亚',
- 'Nicaragua': '尼加拉瓜',
- 'Netherlands': '荷兰',
- 'Norway': '挪威',
- 'Nepal': '尼泊尔',
- 'New Zealand': '新西兰',
- 'Oman': '阿曼',
- 'Pakistan': '巴基斯坦',
- 'Panama': '巴拿马',
- 'Peru': '秘鲁',
- 'Philippines': '菲律宾',
- 'Papua New Guinea': '巴布亚新几内亚',
- 'Poland': '波兰',
- 'Puerto Rico': '波多黎各',
- 'Dem. Rep. Korea': '朝鲜',
- 'Portugal': '葡萄牙',
- 'Paraguay': '巴拉圭',
- 'Qatar': '卡塔尔',
- 'Romania': '罗马尼亚',
- 'Russia': '俄罗斯',
- 'Rwanda': '卢旺达',
- 'W. Sahara': '西撒哈拉',
- 'Saudi Arabia': '沙特阿拉伯',
- 'Sudan': '苏丹',
- 'S. Sudan': '南苏丹',
- 'Senegal': '塞内加尔',
- 'Solomon Is.': '所罗门群岛',
- 'Sierra Leone': '塞拉利昂',
- 'El Salvador': '萨尔瓦多',
- 'Somaliland': '索马里兰',
- 'Somalia': '索马里',
- 'Serbia': '塞尔维亚',
- 'Suriname': '苏里南',
- 'Slovakia': '斯洛伐克',
- 'Slovenia': '斯洛文尼亚',
- 'Sweden': '瑞典',
- 'Swaziland': '斯威士兰',
- 'Syria': '叙利亚',
- 'Chad': '乍得',
- 'Togo': '多哥',
- 'Thailand': '泰国',
- 'Tajikistan': '塔吉克斯坦',
- 'Turkmenistan': '土库曼斯坦',
- 'East Timor': '东帝汶',
- 'Trinidad and Tobago': '特里尼达和多巴哥',
- 'Tunisia': '突尼斯',
- 'Turkey': '土耳其',
- 'Tanzania': '坦桑尼亚',
- 'Uganda': '乌干达',
- 'Ukraine': '乌克兰',
- 'Uruguay': '乌拉圭',
- 'United States': '美国',
- 'Uzbekistan': '乌兹别克斯坦',
- 'Venezuela': '委内瑞拉',
- 'Vietnam': '越南',
- 'Vanuatu': '瓦努阿图',
- 'West Bank': '西岸',
- 'Yemen': '也门',
- 'South Africa': '南非',
- 'Zambia': '赞比亚',
- 'Zimbabwe': '津巴布韦',
- 'Comoros': '科摩罗'
- }
- pieces = [
- {"min": 1000000},
- {"min": 100000, "max": 999999},
- {"min": 10000, "max": 99999},
- {"min": 1000, "max": 9999},
- {"min": 100, "max": 999},
- {"min": 0, "max": 99},
- ]
复制代码
写在最后
好了,今天的分享就差不多到这里了。
兄弟们学习python,有时候不知道怎么学,从哪里开始学。掌握了基本的一些语法或者做了两个案例后,不知道下一步怎么走,不知道如何去学习更加高深的知识。
那么对于这些大兄弟们,我上传了几套视频教程分享在下方,希望对大家有所帮助。
Python零基础入门全套教程
Python进阶全套教程
Python实战100例
当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |