作者:来自 Elastic Jeffrey Rengifo
Ollama API 与 OpenAI API 兼容,因此将 Ollama 与 Elasticsearch 集成非常容易。
在本文中,我们将学习如何使用 Ollama 将本地模子连接到 Elasticsearch 推理模子,然后使用 Playground 向文档提出题目。
Elasticsearch 答应用户使用开放推理 API(Inference API)连接到 LLMs,支持 Amazon Bedrock、Cohere、Google AI、Azure AI Studio、HuggingFace 等提供商(作为服务)等。
Ollama 是一个工具,答应你使用本身的底子办法(本地呆板/服务器)下载和实行 LLM 模子。你可以在此处找到与 Ollama 兼容的可用型号列表。
如果你想要托管和测试不同的开源模子,而又不必担心每个模子需要以不同的方式设置,大概如何创建 API 来访问模子功能,那么 Ollama 是一个不错的选择,由于 Ollama 会处理所有事情。
由于 Ollama API 与 OpenAI API 兼容,我们可以轻松集成推理模子并使用 Playground 创建 RAG 应用程序。
更多阅读,请参阅 “Elasticsearch:在 Elastic 中玩转 DeepSeek R1 来实现 RAG 应用”。
先决条件
- Elasticsearch 8.17
- Kibana 8.17
- Python
步骤
- 设置 Ollama LLM 服务器
- 创建映射
- 索引数据
- 使用 Playground 提问
设置 Ollama LLM 服务器
我们将设置一个 LLM 服务器,并使用 Ollama 将其连接到我们的 Playground 实例。我们需要:
- 下载并运行 Ollama。
- 使用 ngrok 通过互联网访问托管 Ollama 的本地 Web 服务器
下载并运行 Ollama
要使用Ollama,我们起首需要下载它。 Ollama 支持 Linux、Windows 和 macOS,因此只需在此处下载与你的操作系统兼容的 Ollama 版本即可。一旦安装了 Ollama,我们就可以从这个受支持的 LLM 列表中选择一个模子。在此示例中,我们将使用 llama3.2 模子,这是一个通用的多语言模子。在安装过程中,你将启用 Ollama 的命令行工具。下载完成后,你可以运行以下行:
这将输出:
- pulling manifest
- pulling dde5aa3fc5ff... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 2.0 GB
- pulling 966de95ca8a6... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 1.4 KB
- pulling fcc5a6bec9da... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 7.7 KB
- pulling a70ff7e570d9... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 6.0 KB
- pulling 56bb8bd477a5... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 96 B
- pulling 34bb5ab01051... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 561 B
- verifying sha256 digest
- writing manifest
- success
复制代码 安装后,你可以使用以下命令举行测试:
我们来问一个题目:
在模子运行时,Ollama 启用默认在端口 “11434” 上运行的 API。让我们按照官方文档向该 API 发出请求:
- curl http://localhost:11434/api/generate -d '{
- "model": "llama3.2",
- "prompt": "What is the capital of France?"
- }'
复制代码 这是我们得到的答案:
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.152817532Z","response":"The","done":false}
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.251884485Z","response":" capital","done":false}
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.347365913Z","response":" of","done":false}
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.446837322Z","response":" France","done":false}
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.542367394Z","response":" is","done":false}
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.644580384Z","response":" Paris","done":false}
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.739865362Z","response":".","done":false}
- {"model":"llama3.2","created_at":"2024-11-28T21:48:42.834347518Z","response":"","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,3923,374,279,6864,315,9822,30,128009,128006,78191,128007,271,791,6864,315,9822,374,12366,13],"total_duration":6948567145,"load_duration":4386106503,"prompt_eval_count":32,"prompt_eval_duration":1872000000,"eval_count":8,"eval_duration":684000000}
复制代码 请注意,此端点的具体相应是流式传输。
使用 ngrok 将端点袒露给互联网
由于我们的端点在本地情况中工作,因此无法通过互联网从另一个点(如我们的 Elastic Cloud 实例)访问它。 ngrok 答应我们公开提供公共 IP 的端口。在 ngrok 中创建一个帐户并按照官方设置指南举行操作。
注:这个有点类似在中国提供的 “花生壳” 功能。
一旦安装并设置了 ngrok 署理,我们就可以使用以下命令公开 Ollama 端口:
- ngrok http 11434 --host-header="localhost:11434"
复制代码 注意:标头 --host-header="localhost:11434" 包管请求中的 “Host” 标头与 “localhost:11434” 匹配
实行此命令将返回一个公共链接,只要 ngrok 和 Ollama 服务器在本地运行,该链接就会起作用。
- Session Status online
- Account xxxx@yourEmailProvider.com (Plan: Free)
- Version 3.18.4
- Region United States (us)
- Latency 561ms
- Web Interface http://127.0.0.1:4040
- Forwarding https://your-ngrok-url.ngrok-free.app -> http://localhost:11434
- Connections ttl opn rt1 rt5 p50 p90
- 0 0 0.00 0.00 0.00 0.00 ```
复制代码 在 “Forwarding” 中我们可以看到 ngrok 生成了一个 URL。生存以供以后使用。
让我们再次尝试向端点发出 HTTP 请求,现在使用 ngrok 生成的 URL:
- curl https://your-ngrok-endpoint.ngrok-free.app/api/generate -d '{
- "model": "llama3.2",
- "prompt": "What is the capital of France?"
- }'
复制代码 相应应与前一个类似。
创建映射
ELSER 端点
对于此示例,我们将使用 Elasticsearch 推理 API 创建一个推理端点。此外,我们将使用 ELSER 来生成嵌入。
- PUT _inference/sparse_embedding/medicines-inference
- {
- "service": "elasticsearch",
- "service_settings": {
- "num_allocations": 1,
- "num_threads": 1,
- "model_id": ".elser_model_2_linux-x86_64"
- }
- }
复制代码 在这个例子中,假设你有一家药店,销售两种范例的药品:
该信息将包含在每种药物的形貌字段中。
LLM 必须表明这个字段,因此我们将使用以下数据映射:
- PUT medicines
- {
- "mappings": {
- "properties": {
- "name": {
- "type": "text",
- "copy_to": "semantic_field"
- },
- "semantic_field": {
- "type": "semantic_text",
- "inference_id": "medicines-inference"
- },
- "text_description": {
- "type": "text",
- "copy_to": "semantic_field"
- }
- }
- }
- }
复制代码 字段 text_description 将存储形貌的纯文本,而 semantic_field(一种 semantic_text 字段范例)将存储由 ELSER 生成的嵌入。
copy_to 属性将把字段 name 和 text_description 中的内容复制到语义字段中,以便生成这些字段的嵌入。
索引数据
现在,让我们使用 _bulk API 对数据举行索引。
- POST _bulk
- {"index":{"_index":"medicines"}}
- {"id":1,"name":"Paracetamol","text_description":"An analgesic and antipyretic that does NOT require a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":2,"name":"Ibuprofen","text_description":"A nonsteroidal anti-inflammatory drug (NSAID) available WITHOUT a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":3,"name":"Amoxicillin","text_description":"An antibiotic that requires a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":4,"name":"Lorazepam","text_description":"An anxiolytic medication that strictly requires a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":5,"name":"Omeprazole","text_description":"A medication for stomach acidity that does NOT require a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":6,"name":"Insulin","text_description":"A hormone used in diabetes treatment that requires a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":7,"name":"Cold Medicine","text_description":"A compound formula to relieve flu symptoms available WITHOUT a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":8,"name":"Clonazepam","text_description":"An antiepileptic medication that requires a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":9,"name":"Vitamin C","text_description":"A dietary supplement that does NOT require a prescription."}
- {"index":{"_index":"medicines"}}
- {"id":10,"name":"Metformin","text_description":"A medication used for type 2 diabetes that requires a prescription."}
复制代码 相应:
- {
- "errors": false,
- "took": 34732020848,
- "items": [
- {
- "index": {
- "_index": "medicines",
- "_id": "mYoeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 0,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "mooeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 1,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "m4oeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 2,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "nIoeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 3,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "nYoeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 4,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "nooeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 5,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "n4oeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 6,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "oIoeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 7,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "oYoeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 8,
- "_primary_term": 1,
- "status": 201
- }
- },
- {
- "index": {
- "_index": "medicines",
- "_id": "oooeMpQBF7lnCNFTfdn2",
- "_version": 1,
- "result": "created",
- "_shards": {
- "total": 2,
- "successful": 2,
- "failed": 0
- },
- "_seq_no": 9,
- "_primary_term": 1,
- "status": 201
- }
- }
- ]
- }
复制代码
使用 Playground 提问
Playground 是一个 Kibana 工具,答应你使用 Elasticsearch 索引和 LLM 提供程序快速创建 RAG 系统。你可以阅读本文以了解更多信息。
将本地 LLM 连接到 Playground
我们起首需要创建一个使用我们刚刚创建的公共 URL 的连接器。在 Kibana 中,转到 Search> layground,然后单击 “Connect to an LLM”。
此操作将显示 Kibana 界面左侧的菜单。在那里,点击 “OpenAI”。
我们现在可以开始设置 OpenAI 连接器。
转到 “Connector settings”,对于 OpenAI 提供商,选择 “Other (OpenAI Compatible Service)”:
现在,让我们设置其他字段。在这个例子中,我们将我们的模子定名为 “medicines-llm”。在 URL 字段中,使用 ngrok 生成的 URL(/v1/chat/completions)。在 “Default model” 字段中,选择 “llama3.2”。我们不会使用 API 密钥,因此只需输入任何随机文本即可继续:
点击 “Save”,点击 “Add data sources” 添加索引药品:
太棒了!我们现在可以使用在本地运行的 LLM 作为 RAG 引擎来访问 Playground。
在测试之前,让我们向署理添加更具体的指令,并将发送给模子的文档数量增长到 10,以便答案具有尽可能多的可用文档。上下文字段将是 semantic_field,它包括药物的名称和形貌,这要归功于 copy_to 属性。
现在让我们问一个题目:Can I buy Clonazepam without a prescription? 看看会发生什么:
https://drive.google.com/file/d/1WOg9yJ2Vs5ugmXk9_K9giZJypB8jbxuN/view?usp=drive_link
正如我们所料,我们得到了正确的答案。
后续步骤
下一步是创建你本身的应用程序! Playground 提供了一个 Python 代码脚本,你可以在本身的呆板上运行它并自界说它以满足你的需要。例如,通过将其置于 FastAPI 服务器后面来创建由你的 UI 使用的 QA 药品聊天呆板人。
你可以通过点击 Playground 右上角的 View code 按钮找到此代码:
并且你使用 Endpoints & API keys 生成代码中所需的 ES_API_KEY 情况变量。
对于此特定示例,代码如下:
- ## Install the required packages
- ## pip install -qU elasticsearch openai
- import os
- from elasticsearch import Elasticsearch
- from openai import OpenAI
- es_client = Elasticsearch(
- "https://your-deployment.us-central1.gcp.cloud.es.io:443",
- api_key=os.environ["ES_API_KEY"]
- )
- openai_client = OpenAI(
- api_key=os.environ["OPENAI_API_KEY"],
- )
- index_source_fields = {
- "medicines": [
- "semantic_field"
- ]
- }
- def get_elasticsearch_results():
- es_query = {
- "retriever": {
- "standard": {
- "query": {
- "nested": {
- "path": "semantic_field.inference.chunks",
- "query": {
- "sparse_vector": {
- "inference_id": "medicines-inference",
- "field": "semantic_field.inference.chunks.embeddings",
- "query": query
- }
- },
- "inner_hits": {
- "size": 2,
- "name": "medicines.semantic_field",
- "_source": [
- "semantic_field.inference.chunks.text"
- ]
- }
- }
- }
- }
- },
- "size": 3
- }
- result = es_client.search(index="medicines", body=es_query)
- return result["hits"]["hits"]
- def create_openai_prompt(results):
- context = ""
- for hit in results:
- inner_hit_path = f"{hit['_index']}.{index_source_fields.get(hit['_index'])[0]}"
- ## For semantic_text matches, we need to extract the text from the inner_hits
- if 'inner_hits' in hit and inner_hit_path in hit['inner_hits']:
- context += '\n --- \n'.join(inner_hit['_source']['text'] for inner_hit in hit['inner_hits'][inner_hit_path]['hits']['hits'])
- else:
- source_field = index_source_fields.get(hit["_index"])[0]
- hit_context = hit["_source"][source_field]
- context += f"{hit_context}\n"
- prompt = f"""
- Instructions:
- - You are an assistant specializing in answering questions about the sale of medicines.
- - Answer questions truthfully and factually using only the context presented.
- - If you don't know the answer, just say that you don't know, don't make up an answer.
- - You must always cite the document where the answer was extracted using inline academic citation style [], using the position.
- - Use markdown format for code examples.
- - You are correct, factual, precise, and reliable.
- Context:
- {context}
- """
- return prompt
- def generate_openai_completion(user_prompt, question):
- response = openai_client.chat.completions.create(
- model="gpt-3.5-turbo",
- messages=[
- {"role": "system", "content": user_prompt},
- {"role": "user", "content": question},
- ]
- )
- return response.choices[0].message.content
- if __name__ == "__main__":
- question = "my question"
- elasticsearch_results = get_elasticsearch_results()
- context_prompt = create_openai_prompt(elasticsearch_results)
- openai_completion = generate_openai_completion(context_prompt, question)
- print(openai_completion)
复制代码 为了使其与 Ollama 一起工作,你必须更改 OpenAI 客户端以连接到 Ollama 服务器而不是 OpenAI 服务器。你可以在此处找到 OpenAI 示例和兼容端点的完备列表。
- openai_client = OpenAI(
- # you can use http://localhost:11434/v1/ if running this code locally.
- base_url='https://your-ngrok-url.ngrok-free.app/v1/',
- # required but ignored
- api_key='ollama',
- )
复制代码 并且在调用完成方法时将模子更改为 llama3.2:
- def generate_openai_completion(user_prompt, question):
- response = openai_client.chat.completions.create(
- model="llama3.2",
- messages=[
- {"role": "system", "content": user_prompt},
- {"role": "user", "content": question},
- ]
- )
- return response.choices[0].message.content
复制代码 让我们添加一个题目:an I buy Clonazepam without a prescription? 对于 Elasticsearch 查询:
- def get_elasticsearch_results():
- es_query = {
- "retriever": {
- "standard": {
- "query": {
- "nested": {
- "path": "semantic_field.inference.chunks",
- "query": {
- "sparse_vector": {
- "inference_id": "medicines-inference",
- "field": "semantic_field.inference.chunks.embeddings",
- "query": "Can I buy Clonazepam without a prescription?"
- }
- },
- "inner_hits": {
- "size": 2,
- "name": "medicines.semantic_field",
- "_source": [
- "semantic_field.inference.chunks.text"
- ]
- }
- }
- }
- }
- },
- "size": 3
- }
- result = es_client.search(index="medicines", body=es_query)
- return result["hits"]["hits"]
复制代码 别的,在完成调用时还会打印一些内容,这样我们就可以确认我们正在将 Elasticsearch 效果作为题目上下文的一部分发送:
- if __name__ == "__main__":
- question = "Can I buy Clonazepam without a prescription?"
- elasticsearch_results = get_elasticsearch_results()
- context_prompt = create_openai_prompt(elasticsearch_results)
- print("========== Context Prompt START ==========")
- print(context_prompt)
- print("========== Context Prompt END ==========")
- print("========== Ollama Completion START ==========")
- openai_completion = generate_openai_completion(context_prompt, question)
- print(openai_completion)
- print("========== Ollama Completion END ==========")
复制代码 现在让我们运行命令:
- pip install -qU elasticsearch openai
- python main.py
复制代码 你应该看到类似这样的内容:
- ========== Context Prompt START ==========
- Instructions:
- - You are an assistant specializing in answering questions about the sale of medicines.
- - Answer questions truthfully and factually using only the context presented.
- - If you don't know the answer, just say that you don't know, don't make up an answer.
- - You must always cite the document where the answer was extracted using inline academic citation style [], using the position.
- - Use markdown format for code examples.
- - You are correct, factual, precise, and reliable.
- Context:
- Clonazepam
- ---
- An antiepileptic medication that requires a prescription.A nonsteroidal anti-inflammatory drug (NSAID) available WITHOUT a prescription.
- ---
- IbuprofenAn anxiolytic medication that strictly requires a prescription.
- ---
- Lorazepam
- ========== Context Prompt END ==========
- ========== Ollama Completion START ==========
- No, you cannot buy Clonazepam over-the-counter (OTC) without a prescription [1]. It is classified as a controlled substance in the United States due to its potential for dependence and abuse. Therefore, it can only be obtained from a licensed healthcare provider who will issue a prescription for this medication.
- ========== Ollama Completion END ==========
复制代码
结论
在本文中,我们可以看到,当将 Ollama 等工具与 Elasticsearch 推理 API 和 Playground 联合使用时,它们的强大功能和多功能性。
颠末几个简朴的步骤,我们就得到了一个可以运行的 RAG 应用程序,该应用程序可以使用 LLM 在我们本身的底子办法中免费运行的聊天功能。这还使我们能够更好地控制资源和敏感信息,同时还使我们能够访问用于不同任务的各种模子。
想要获得 Elastic 认证吗?了解下一期 Elasticsearch 工程师培训何时举行!
Elasticsearch 包含许多新功能,可帮助你为你的用例构建最佳的搜索解决方案。深入了解我们的示例条记本以了解更多信息,开始免费云试用,或立即在本地呆板上试用 Elastic。
原文:Using Ollama with the Inference API - Elasticsearch Labs
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |