AlphaFold3 rigid_utils 模块Rigid类的 from_3_points 方法主要用来从三个点构建刚体变换 (Rigid transformation),焦点头脑是 Gram-Schmidt 正交化来生成一个局部坐标系。输入为氨基酸残基的主链原子(N, CA, C)的坐标,返回的 Rigid 实例可以把该氨基酸残基原子的全局坐标转换为局部坐标。
源代码:
- @staticmethod
- def from_3_points(
- p_neg_x_axis: torch.Tensor,
- origin: torch.Tensor,
- p_xy_plane: torch.Tensor,
- eps: float = 1e-8
- ) -> Rigid:
- """
- Implements algorithm 21. Constructs transformations from sets of 3
- points using the Gram-Schmidt algorithm.
- Args:
- p_neg_x_axis: [*, 3] coordinates
- origin: [*, 3] coordinates used as frame origins
- p_xy_plane: [*, 3] coordinates
- eps: Small epsilon value
- Returns:
- A transformation object of shape [*]
- """
- p_neg_x_axis = torch.unbind(p_neg_x_axis, dim=-1)
- origin = torch.unbind(origin, dim=-1)
- p_xy_plane = torch.unbind(p_xy_plane, dim=-1)
- e0 = [c1 - c2 for c1, c2 in zip(origin, p_neg_x_axis)]
- e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane, origin)]
- denom = torch.sqrt(sum((c * c for c in e0)) + eps)
- e0 = [c / denom for c in e0]
- dot = sum((c1 * c2 for c1, c2 in zip(e0, e1)))
- e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)]
- denom = t
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |