开发情况
- 操作系统 Windows 11 家庭中文版 (64位)
- CPU AMD 9950X
- 主板 华硕 PRIME X870-P WIFI
- 内存 32GB(4800 MHz)
- 主硬盘 致钛 TiPlus7100 1TB
- 显卡 NVIDIA GeForce RTX 4060
复制代码- DeepSeek-R1-Distill-Qwen-1.5B
- LLaMA-Factory
- Anaconda3-2024.10-1-Windows-x86_64.exe
- cuda_12.8.0_571.96_windows.exe
- NVIDIA_app_v11.0.2.312.exe
- torch-2.6.0+cu126-cp312-cp312-win_amd64.whl
- triton-3.2.0-cp312-cp312-win_amd64.whl
- Visual Studio 2022
- VC_redist.x64.exe
复制代码 开发过程
- 安装Visual Studio 2022和VC_redist.x64.exe,将cl.exe路径添加到体系情况变量,主要是deepseek的ptx或triton编译要用到
- D:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.42.34433\bin\Hostx64\x86
- D:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.42.34433\bin\Hostx64\x64
复制代码
- 安装anaconda并创建捏造情况llama_factory,使用whl方式安装torch和triton,由于torch大且pip下载慢,window下pip没法安装triton,其他的运行过程中缺什么pip install装什么
- conda create --name llama_factory
- conda activate llama_factory
- pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
- pip install .\torch-2.6.0+cu126-cp312-cp312-win_amd64.whl
- pip install .\triton-3.2.0-cp312-cp312-win_amd64.whl
- pip install unsloth
复制代码
- 安装LLaMA-Factory,在捏造情况llama_factory下安装
- git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
- conda activate llama_factory
- cd LLaMA-Factory
- pip install -e ".[torch,metrics]"
- llamafactory-cli webui
复制代码
- 将魔塔社区上的parquet格式CoT数据集转为LLaMA-Factory的alpaca格式,并在dataset_info.json里面举行声明
- import pandas as pd
- import json
- df = pd.read_parquet('D:\\DeepSeek-R1-Distill-Qwen-1.5B\\Magpie-Reasoning-V1-150K-CoT-Deepseek-R1-Llama-70B\\train-00000-of-00006.parquet')
- print(df.tail())
- # 创建一个空列表来存储转换后的数据
- alpaca_data = []
- i = 0
- for index, row in df.iterrows():
- i = i + 1
- # 创建一个字典来存储当前行的数据
- data_point = {
- "instruction": row['instruction'],
- "input": "",
- "output": row['response']
- }
- print(data_point)
- # 将字典添加到列表中
- alpaca_data.append(data_point)
- if (i>3000):
- break
- # 将列表转换为JSON字符串
- alpaca_json = json.dumps(alpaca_data, indent=4)
- alpaca_data[-1]
- # 保存到文件
- with open('D:/DeepSeek-R1-Distill-Qwen-1.5B/LLaMA-Factory/data/MRPC_train_data.json', 'w') as f:
- f.write(alpaca_json)
复制代码 
- ==((====))== Unsloth 2025.2.15: Fast Qwen2 patching. Transformers: 4.48.3.
- \\ /| GPU: NVIDIA GeForce RTX 4060. Max memory: 7.996 GB. Platform: Windows.
- O^O/ \_/ \ Torch: 2.6.0+cu126. CUDA: 8.9. CUDA Toolkit: 12.6. Triton: 3.2.0
- \ / Bfloat16 = TRUE. FA [Xformers = 0.0.29.post3. FA2 = False]
- "-____-" Free Apache license: http://github.com/unslothai/unsloth
复制代码
- 加速方式使用unsloth,数据集使用CoT数据集,截断长度拉到最长,然后3000条CoT数据微调大概要3小时
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
|