首页
找靠谱产品
找解决方案
找靠谱公司
找案例
找对的人
专家智库
悬赏任务
SAAS
ToB门户
了解全球最新的ToB事件
论坛
潜水/灌水快乐,沉淀知识,认识更多同行。
ToB圈子
加入IT圈,遇到更多同好之人。
微博
Follow
记录
Doing
博客
Blog
文库
业界最专业的IT文库,上传资料也可以赚钱
下载
分享
Share
排行榜
Ranklist
相册
Album
应用中心
qidao123.com技术社区-IT企服评测·应用市场
»
论坛
›
大数据
›
数据仓库与分析
›
Spark架构体系
返回列表
发新帖
Spark架构体系
[复制链接]
发表于 2023-6-27 02:50:21
|
显示全部楼层
|
阅读模式
Spark架构体系
StandAlone模式是spark自带的集群运行模式,不依赖其他的资源调度框架,部署起来简单。
StandAlone模式又分为client模式和cluster模式,本质区别是Driver运行在哪里,如果Driver运行在SparkSubmit进程中就是Client模式,如果Driver运行在集群中就是Cluster模式
standalone client模式
standalone cluster模式
Spark On YARN cluster模式
Spark执行流程简介
Job:RDD每一个行动操作都会生成一个或者多个调度阶段 调度阶段(Stage):每个Job都会根据依赖关系,以Shuffle过程作为划分,分为Shuffle Map Stage和Result Stage。每个Stage对应一个TaskSet,一个Task中包含多Task,TaskSet的数量与该阶段最后一个RDD的分区数相同。
Task:分发到Executor上的工作任务,是Spark的最小执行单元
DAGScheduler:DAGScheduler是将DAG根据宽依赖将切分Stage,负责划分调度阶段并Stage转成TaskSet提交给TaskScheduler
TaskScheduler:TaskScheduler是将Task调度到Worker下的Exexcutor进程,然后丢入到Executor的线程池的中进行执行
Spark中重要角色
Master :是一个Java进程,接收Worker的注册信息和心跳、移除异常超时的Worker、接收客户端提交的任务、负责资源调度、命令Worker启动Executor。
Worker :是一个Java进程,负责管理当前节点的资源管理,向Master注册并定期发送心跳,负责启动Executor、并
监控
Executor的状态。
SparkSubmit :是一个Java进程,负责向Master提交任务。
Driver :是很多类的统称,可以认为SparkContext就是Driver,client模式Driver运行在SparkSubmit进程中,cluster模式单独运行在一个进程中,负责将用户编写的
代码
转成Tasks,然后调度到Executor中执行,并
监控
Task的状态和执行进度。
Executor :是一个Java进程,负责执行Driver端生成的Task,将Task放入线程中运行。
Spark和Yarn角色对比
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
继续阅读请点击广告
本帖子中包含更多资源
您需要
登录
才可以下载或查看,没有账号?
立即注册
×
回复
使用道具
举报
返回列表
反转基因福娃
+ 我要发帖
×
登录参与点评抽奖,加入IT实名职场社区
去登录
微信订阅号
微信服务号
微信客服(加群)
H5
小程序
快速回复
返回顶部
返回列表