MySQL运维3-分库分表策略

打印 上一主题 下一主题

主题 843|帖子 843|积分 2529

一、介绍

  单库瓶颈:如果在项目中使用的都是单MySQL服务器,则会随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行存储,存在一下性能瓶颈:

  • IO瓶颈:热点数据太多,数据库缓存不足,产生大量磁盘IO,效率低下,请求数据太多,带宽不够,网络IO瓶颈。
  • CPU瓶颈:排序、分组、连接查询、聚合统计等SQL会耗费大量的CPU资源,请求数太多,CPU出现瓶颈。
  分库分表:就是将数据分散存储,是将单一数据库/表的数据量变小来缓解单一数据库的性能问题,从而达到提升数据库性能的目的。
  
二、拆分策略

  
  2.1 垂直分库

    特点:以表为依据,根据业务将不同表拆分到不同库中。



    • 每个库的表结构都不一样
    • 每个表的数据也不一样
    • 所有库的并集是全量数据

  
  2.2 垂直分表

    特点:以字段为依据,根据字段属性将不同字段分到不同表中 。



    • 每个表的结构都不一样
    • 每个表的数据也不一样,一般通过一列(主键/外键)管理
    • 所有表的并集是全量数据

    
  2.3 水平分库 

    特点:以字段为依据,按照一定策略,将一个库的数据拆分到多个库中



    • 每个库的表结构一样。
    • 每个库的数据都不一样
    • 所有库的并集是全量数据

    
  2.4 水平分表

    特点:以字段为依据,按照一定策略,将一个表的数据拆分到多个表中。



    • 每个表的结构都一样
    • 每个表的数据都不一样
    • 所有表的并集是全量数据

  2.5 组合策略  

    在实际应用中,可以同时采用分库和分表的策略,根据业务需求和系统负载情况来选择合适的分库分表策略。
三、分库分别键

  3.1 业务键

    根据业务需求,选择具有业务含义的键作为分库分表的依据,例如,按照用户ID分表
  3.2 时间键

    对于大部分应用来说,按时间进行分表是一个常见的选择,可以更容易地管理历史数据
  3.3 哈希建

    使用哈希函数将数据均匀地分散到不同的库或表中,以防止热点数据集中存储
  3.4 范围键

    按照数据范围进行分表,适用于数据按照某一范围规律增长的情况
 

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

数据人与超自然意识

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表