论坛
潜水/灌水快乐,沉淀知识,认识更多同行。
ToB圈子
加入IT圈,遇到更多同好之人。
朋友圈
看朋友圈动态,了解ToB世界。
ToB门户
了解全球最新的ToB事件
博客
Blog
排行榜
Ranklist
文库
业界最专业的IT文库,上传资料也可以赚钱
下载
分享
Share
导读
Guide
相册
Album
记录
Doing
搜索
本版
文章
帖子
ToB圈子
用户
免费入驻
产品入驻
解决方案入驻
公司入驻
案例入驻
登录
·
注册
只需一步,快速开始
账号登录
立即注册
找回密码
用户名
Email
自动登录
找回密码
密码
登录
立即注册
首页
找靠谱产品
找解决方案
找靠谱公司
找案例
找对的人
专家智库
悬赏任务
圈子
SAAS
ToB企服应用市场:ToB评测及商务社交产业平台
»
论坛
›
数据库
›
PostgreSQL
›
怎样在 Elasticsearch 中选择精确 kNN 搜索和近似 kNN ...
怎样在 Elasticsearch 中选择精确 kNN 搜索和近似 kNN 搜索
万有斥力
金牌会员
|
2024-6-14 23:33:03
|
显示全部楼层
|
阅读模式
楼主
主题
876
|
帖子
876
|
积分
2628
作者:来自 Elastic Carlos Delgado
kNN 是什么?
语义搜索(semantic search)是相干性排名的强大工具。 它使你不仅可以使用关键字,还可以思量文档和查询的现实含义。
语义搜索基于向量搜索(vector search)。 在向量搜索中,我们要搜索的文档具有为其盘算的向量嵌入。 这些嵌入是使用机器学习模子盘算的,并作为向量返回,与我们的文档数据一起存储。
执行查询时,将使用雷同的机器学习模子来盘算查询文本的嵌入。 语义搜索包括通过将查询嵌入与文档嵌入进行比较来查找最接近查询的结果。
kNN(或 k nearest neighbors - k 最近邻)是一种用于获取与特定嵌入最接近的前 k 个结果的技能。
使用嵌入盘算查询的 kNN 有两种主要方法:精确和近似。 这篇文章将帮助你:
相识什么是精确和近似 kNN 搜索
怎样为这些方法准备索引
怎样确定哪种方法最适合你的用例
精确 kNN:搜索全部内容
盘算更接近结果的一种方法是将全部现有文档嵌入与查询的文档嵌入进行比较。 这将确保我们得到尽可能最接近的匹配,因为我们将比较全部匹配。 我们的搜索结果将尽可能准确,因为我们正在思量整个文档语料库并将全部文档嵌入与查询嵌入进行比较。
当然,与全部文档进行比较有一个缺点:需要时间。 我们将使用相似度函数对全部文档逐一盘算嵌入相似度。 这也意味着我们将线性扩展 —— 文档数目增加一倍可能需要两倍的时间。
可以使用 script_score 和用于盘算向量之间相似度的向量函数在向量场上进行精确搜索。
近似 kNN:一个很好的估计
另一种方法是使用近似值而不是思量全部文档。 为了提供 kNN 的有效近似,Elasticsearch 和 Lucene 使用分层导航小世界 HNSW (
H
ierachical
N
avigation
S
mall
W
orlds)。
HNSW 是一种图数据布局,它维护差别层中靠近的元素之间的链接。 每层都包罗相互连接的元素,并且还与其下方层的元素相连接。 每层包罗更多元素,底层包罗全部元素。
图 1 - HNSW 图示例。 顶层包罗开始搜索的初始节点。 这些初始节点充当较低层的入口点,每个层包罗更多节点。 下层包罗全部节点。
可以把它想象成开车:有高速公路、道路和街道。在高速公路上行驶时,你会看到一些描述高条理区域(如城镇或社区)的出口标志。然后你会到达一条有具体街道指示的道路。一旦你到达某条街道,你就可以找到具体的地址,以及同一社区内的其他地址。
HNSW(Hierarchical Navigable Small World)布局类似于此,它创建了差别条理的向量嵌入。它盘算离初始查询较近的 “高速公路”,选择看起来更有希望的出口,继续探求更接近目标地址的地方。这在性能方面非常优秀,因为它不必思量全部文档,而是使用这种多条理的方法快速找到接近目标的近似结果。
但是,这只是一个近似值。并不是全部节点都是互联的,这意味着可能会忽略某些更接近特定节点的结果,因为它们可能没有连接。节点的互联程度取决于 HNSW 布局的创建方式。
HNSW 的结果取决于多个因素:
它是怎样构建的。HNSW 的构建过程会思量一定数目的候选节点,作为某一特定节点的近邻。增加思量的候选节点数目会使布局更精确,但会在索引时花费更多时间。dense vector index_options 中的 ef_construction 参数用于此目的。
搜索时思量的候选节点数目。在探求更近结果时,过程会跟踪一定数目的候选节点。这个数目越大,结果越精确,但搜索速度会变慢。kNN 参数中的 num_candidates 控制这种行为。
我们搜索的分段数目。每个分段都有一个需要搜索的 HNSW 图,其结果需要与其他分段图的结果联合。分段越少,搜索的图就越少(因此速度更快),但结果集的多样性会镌汰(因此精度较低)。
总的来说,HNSW 在性能和召回率之间提供了精良的权衡,并答应在索引和查询两方面进行微调。
使用 HNSW 进行搜索可以在大多数环境下通过 kNN 搜索部门完成。对于更高级的用例,也可以使用 kNN 查询,例如:
将 kNN 与其他查询联合(作为布尔查询或固定查询的一部门)
使用 function_score 微调评分
提高聚合和字段折叠(field collapse)的多样性
你可以在这篇文章中检察关于 kNN 查询及其与 kNN 搜索部门的区别。我们将在下面深入讨论何时使用这种方法与其他方法。
为精确和近似搜索创建索引
dense_vector 字段范例
对于存储嵌入,dense_vector 字段有两种主要的索引范例可供选择:
flat 范例
(包括 flat 和 int8_flat):存储原始向量,不添加 HNSW 数据布局。使用 flat 索引范例的 dense_vector 将始终使用精确的 kNN,kNN 查询将执行精确查询而不是近似查询。
HNSW 范例
(包括 hnsw 和 int8_hnsw):创建 HNSW 数据布局,答应使用近似 kNN 搜索。
这是否意味着你不能对 HNSW 字段范例使用精确的 kNN?并非云云!你可以通过 script_score 查询使用精确 kNN,也可以通过 kNN 部门和 kNN 查询使用近似 kNN。这样可以根据你的搜索用例提供更多的灵活性。
使用 HNSW 字段范例意味着需要构建 HNSW 图布局,这需要时间、内存和磁盘空间。假如你只会使用精确搜索,可以使用 flat 向量字段范例。这确保了你的嵌入索引是最佳的,并且占用更少的空间。
请记住,在任何环境下都应避免将嵌入存储在 _source 中,以镌汰存储需求。
量化
使用量化技能,无论是 flat(int8_flat)照旧 HNSW(int8_hnsw)范例的索引,都可以帮助你镌汰嵌入的大小,从而使用更少的内存和磁盘存储来生存嵌入信息。
由于搜索性能依赖于尽可能多地将嵌入存储在内存中,因此你应该始终探求镌汰数据的方法。使用量化是在内存和召回率之间进行权衡。
怎样在精确搜索和近似搜索之间做出选择?
没有一种适用于全部环境的答案。你需要思量多个因素,并进行实行,以找到性能和准确性之间的最佳均衡:
数据规模
不应该不惜齐备代价避免搜索全部内容。根据你的数据规模(文档数目和嵌入维度),进行精确的 kNN 搜索可能是公道的。
作为一个经验法则,假如需要搜索的文档少于一万,可能表明应该使用精确搜索。请记住,可以提前过滤需要搜索的文档数目,因此通过应用过滤条件可以限制现实需要搜索的文档数目。
近似搜索在文档数目方面具有更好的扩展性,因此假如你有大量文档需要搜索,或者预计文档数目会明显增加,应该选择近似搜索。
图 2 - 使用 so_vector rally track 中 768 维向量进行精确和近似 kNN 的示例运行。该示例展示了精确 kNN 的线性运行时间与 HNSW 搜索的对数运行时间。
过滤 - filtering
过滤非常紧张,因为它镌汰了需要思量搜索的文档数目。在决定使用精确搜索照旧近似搜索时,需要思量这一点。可以使用 query filters 来镌汰需要思量的文档数目,无论是精确搜索照旧近似搜索。
然而,近似搜索在过滤时接纳了差别的方法。在使用 HNSW 进行近似搜索时,查询过滤器将在检索到前 k 个结果后应用。这就是为什么与 kNN 查询一起使用查询过滤器被称为 kNN 的后过滤。
图 3 - kNN 搜索中的后过滤。
这种特定的 kNN 查询过滤器被称为 kNN 预过滤器,因为它在检索结果之前应用,而不是之后。因此,在使用 kNN 查询的上下文中,常规查询过滤器被称为后过滤器。
荣幸的是,还有另一种与 kNN 一起使用的方法,即在 kNN 查询本身中指定过滤器。 当遍历 HNSW 图收集结果时,此过滤器适用于图元素,而不是过后应用。 这确保返回前 k 个元素,因为将遍历图 - 跳过未通过过滤器的元素 - 直到我们得到前 k 个元素。
即将推出的功能
即将推出的一些改进将有助于精确和近似 kNN。
Elasticsearch 将增加将 dense_vector 范例从 flat 升级到 HNSW 的功能。这意味着你可以先使用 flat 向量范例进行精确 kNN,当需要扩展时可以开始使用 HNSW。使用近似 kNN 时,你的段将透明地被搜索,并在合并时自动转换为 HNSW。
一个新的精确 kNN 查询将被添加,以便使用简单的查询来对 flat 和 HNSW 字段进行精确 kNN,而不是依赖于 script score 查询。这将使精确 kNN 更加简便。
结论
那么,你应该在文档上使用近似 kNN 照旧精确 kNN 呢?请查抄以下几点:
文档数目
:假如少于一万(应用过滤器后),可能适合使用精确搜索。
你的搜索是否使用了过滤器
:这会影响要搜索的文档数目。假如需要使用近似 kNN,请记住使用 kNN 预过滤器以获取更多结果,代价是性能下降。
你可以通过使用 HNSW dense_vector 进行索引,并将 kNN 搜索与 script_score 进行精确 kNN 的对比,来比较两种方法的性能。这答应在使用雷同字段范例的环境下比较两种方法(假如决定使用精确搜索,请记住将 dense_vector 字段范例更改为 flat)。
祝你搜索愉快!
准备将 RAG 集成到你的应用中吗?想实行在向量数据库中使用差别的 LLMs 吗? 检察我们在 Github 上的 LangChain、Cohere 等示例笔记本,并到场即将开始的 Elasticsearch 工程师培训吧!
原文:kNN in Elasticsearch: How to choose between exact and approximate kNN search — Elastic Search Labs
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
本帖子中包含更多资源
您需要
登录
才可以下载或查看,没有账号?
立即注册
x
回复
使用道具
举报
0 个回复
倒序浏览
返回列表
快速回复
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
or
立即注册
本版积分规则
发表回复
回帖并转播
回帖后跳转到最后一页
发新帖
回复
万有斥力
金牌会员
这个人很懒什么都没写!
楼主热帖
MyBatis-Plus入门教程及基本API使用案 ...
解密PC微信数据库:深入探索与实用代价 ...
阿里巴巴Java开发手册(全册四版) ...
OpenJDK和OracleJDK的区别说明
几个函数的使用例子:更新VBRK-XBLNR, ...
深度理解 C# 中的 for 和 foreach ...
.net 发邮件的小工具,包含json,环境 ...
2022年混过的那些SAP项目
EFCore 动态拼接查询条件(表达式树方式 ...
Excel 制作可视化看板的思路及操作 ...
标签云
存储
挺好的
服务器
快速回复
返回顶部
返回列表